File: //var/www/aspa/three/extras/PMREMGenerator.js
import {
	CubeReflectionMapping,
	CubeRefractionMapping,
	CubeUVReflectionMapping,
	LinearFilter,
	NoToneMapping,
	NoBlending,
	RGBAFormat,
	HalfFloatType,
	BackSide,
	LinearSRGBColorSpace
} from '../constants.js';
import { BufferAttribute } from '../core/BufferAttribute.js';
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Mesh } from '../objects/Mesh.js';
import { OrthographicCamera } from '../cameras/OrthographicCamera.js';
import { PerspectiveCamera } from '../cameras/PerspectiveCamera.js';
import { ShaderMaterial } from '../materials/ShaderMaterial.js';
import { Vector3 } from '../math/Vector3.js';
import { Color } from '../math/Color.js';
import { WebGLRenderTarget } from '../renderers/WebGLRenderTarget.js';
import { MeshBasicMaterial } from '../materials/MeshBasicMaterial.js';
import { BoxGeometry } from '../geometries/BoxGeometry.js';
const LOD_MIN = 4;
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const _flatCamera = /*@__PURE__*/ new OrthographicCamera();
const _clearColor = /*@__PURE__*/ new Color();
let _oldTarget = null;
let _oldActiveCubeFace = 0;
let _oldActiveMipmapLevel = 0;
// Golden Ratio
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
	/*@__PURE__*/ new Vector3( 1, 1, 1 ),
	/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
	/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
	/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
	/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
	/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
	/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
	/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
	/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
	/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ) ];
/**
 * This class generates a Prefiltered, Mipmapped Radiance Environment Map
 * (PMREM) from a cubeMap environment texture. This allows different levels of
 * blur to be quickly accessed based on material roughness. It is packed into a
 * special CubeUV format that allows us to perform custom interpolation so that
 * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
 * chain, it only goes down to the LOD_MIN level (above), and then creates extra
 * even more filtered 'mips' at the same LOD_MIN resolution, associated with
 * higher roughness levels. In this way we maintain resolution to smoothly
 * interpolate diffuse lighting while limiting sampling computation.
 *
 * Paper: Fast, Accurate Image-Based Lighting
 * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
*/
class PMREMGenerator {
	constructor( renderer ) {
		this._renderer = renderer;
		this._pingPongRenderTarget = null;
		this._lodMax = 0;
		this._cubeSize = 0;
		this._lodPlanes = [];
		this._sizeLods = [];
		this._sigmas = [];
		this._blurMaterial = null;
		this._cubemapMaterial = null;
		this._equirectMaterial = null;
		this._compileMaterial( this._blurMaterial );
	}
	/**
	 * Generates a PMREM from a supplied Scene, which can be faster than using an
	 * image if networking bandwidth is low. Optional sigma specifies a blur radius
	 * in radians to be applied to the scene before PMREM generation. Optional near
	 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
	 * is placed at the origin).
	 */
	fromScene( scene, sigma = 0, near = 0.1, far = 100 ) {
		_oldTarget = this._renderer.getRenderTarget();
		_oldActiveCubeFace = this._renderer.getActiveCubeFace();
		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
		this._setSize( 256 );
		const cubeUVRenderTarget = this._allocateTargets();
		cubeUVRenderTarget.depthBuffer = true;
		this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
		if ( sigma > 0 ) {
			this._blur( cubeUVRenderTarget, 0, 0, sigma );
		}
		this._applyPMREM( cubeUVRenderTarget );
		this._cleanup( cubeUVRenderTarget );
		return cubeUVRenderTarget;
	}
	/**
	 * Generates a PMREM from an equirectangular texture, which can be either LDR
	 * or HDR. The ideal input image size is 1k (1024 x 512),
	 * as this matches best with the 256 x 256 cubemap output.
	 * The smallest supported equirectangular image size is 64 x 32.
	 */
	fromEquirectangular( equirectangular, renderTarget = null ) {
		return this._fromTexture( equirectangular, renderTarget );
	}
	/**
	 * Generates a PMREM from an cubemap texture, which can be either LDR
	 * or HDR. The ideal input cube size is 256 x 256,
	 * as this matches best with the 256 x 256 cubemap output.
	 * The smallest supported cube size is 16 x 16.
	 */
	fromCubemap( cubemap, renderTarget = null ) {
		return this._fromTexture( cubemap, renderTarget );
	}
	/**
	 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
	 * your texture's network fetch for increased concurrency.
	 */
	compileCubemapShader() {
		if ( this._cubemapMaterial === null ) {
			this._cubemapMaterial = _getCubemapMaterial();
			this._compileMaterial( this._cubemapMaterial );
		}
	}
	/**
	 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
	 * your texture's network fetch for increased concurrency.
	 */
	compileEquirectangularShader() {
		if ( this._equirectMaterial === null ) {
			this._equirectMaterial = _getEquirectMaterial();
			this._compileMaterial( this._equirectMaterial );
		}
	}
	/**
	 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
	 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
	 * one of them will cause any others to also become unusable.
	 */
	dispose() {
		this._dispose();
		if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
		if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
	}
	// private interface
	_setSize( cubeSize ) {
		this._lodMax = Math.floor( Math.log2( cubeSize ) );
		this._cubeSize = Math.pow( 2, this._lodMax );
	}
	_dispose() {
		if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
		if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
		for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
			this._lodPlanes[ i ].dispose();
		}
	}
	_cleanup( outputTarget ) {
		this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
		outputTarget.scissorTest = false;
		_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
	}
	_fromTexture( texture, renderTarget ) {
		if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
			this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
		} else { // Equirectangular
			this._setSize( texture.image.width / 4 );
		}
		_oldTarget = this._renderer.getRenderTarget();
		_oldActiveCubeFace = this._renderer.getActiveCubeFace();
		_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
		const cubeUVRenderTarget = renderTarget || this._allocateTargets();
		this._textureToCubeUV( texture, cubeUVRenderTarget );
		this._applyPMREM( cubeUVRenderTarget );
		this._cleanup( cubeUVRenderTarget );
		return cubeUVRenderTarget;
	}
	_allocateTargets() {
		const width = 3 * Math.max( this._cubeSize, 16 * 7 );
		const height = 4 * this._cubeSize;
		const params = {
			magFilter: LinearFilter,
			minFilter: LinearFilter,
			generateMipmaps: false,
			type: HalfFloatType,
			format: RGBAFormat,
			colorSpace: LinearSRGBColorSpace,
			depthBuffer: false
		};
		const cubeUVRenderTarget = _createRenderTarget( width, height, params );
		if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
			if ( this._pingPongRenderTarget !== null ) {
				this._dispose();
			}
			this._pingPongRenderTarget = _createRenderTarget( width, height, params );
			const { _lodMax } = this;
			( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes( _lodMax ) );
			this._blurMaterial = _getBlurShader( _lodMax, width, height );
		}
		return cubeUVRenderTarget;
	}
	_compileMaterial( material ) {
		const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material );
		this._renderer.compile( tmpMesh, _flatCamera );
	}
	_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
		const fov = 90;
		const aspect = 1;
		const cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
		const upSign = [ 1, - 1, 1, 1, 1, 1 ];
		const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
		const renderer = this._renderer;
		const originalAutoClear = renderer.autoClear;
		const toneMapping = renderer.toneMapping;
		renderer.getClearColor( _clearColor );
		renderer.toneMapping = NoToneMapping;
		renderer.autoClear = false;
		const backgroundMaterial = new MeshBasicMaterial( {
			name: 'PMREM.Background',
			side: BackSide,
			depthWrite: false,
			depthTest: false,
		} );
		const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
		let useSolidColor = false;
		const background = scene.background;
		if ( background ) {
			if ( background.isColor ) {
				backgroundMaterial.color.copy( background );
				scene.background = null;
				useSolidColor = true;
			}
		} else {
			backgroundMaterial.color.copy( _clearColor );
			useSolidColor = true;
		}
		for ( let i = 0; i < 6; i ++ ) {
			const col = i % 3;
			if ( col === 0 ) {
				cubeCamera.up.set( 0, upSign[ i ], 0 );
				cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
			} else if ( col === 1 ) {
				cubeCamera.up.set( 0, 0, upSign[ i ] );
				cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
			} else {
				cubeCamera.up.set( 0, upSign[ i ], 0 );
				cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
			}
			const size = this._cubeSize;
			_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
			renderer.setRenderTarget( cubeUVRenderTarget );
			if ( useSolidColor ) {
				renderer.render( backgroundBox, cubeCamera );
			}
			renderer.render( scene, cubeCamera );
		}
		backgroundBox.geometry.dispose();
		backgroundBox.material.dispose();
		renderer.toneMapping = toneMapping;
		renderer.autoClear = originalAutoClear;
		scene.background = background;
	}
	_textureToCubeUV( texture, cubeUVRenderTarget ) {
		const renderer = this._renderer;
		const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
		if ( isCubeTexture ) {
			if ( this._cubemapMaterial === null ) {
				this._cubemapMaterial = _getCubemapMaterial();
			}
			this._cubemapMaterial.uniforms.flipEnvMap.value = ( texture.isRenderTargetTexture === false ) ? - 1 : 1;
		} else {
			if ( this._equirectMaterial === null ) {
				this._equirectMaterial = _getEquirectMaterial();
			}
		}
		const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
		const mesh = new Mesh( this._lodPlanes[ 0 ], material );
		const uniforms = material.uniforms;
		uniforms[ 'envMap' ].value = texture;
		const size = this._cubeSize;
		_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
		renderer.setRenderTarget( cubeUVRenderTarget );
		renderer.render( mesh, _flatCamera );
	}
	_applyPMREM( cubeUVRenderTarget ) {
		const renderer = this._renderer;
		const autoClear = renderer.autoClear;
		renderer.autoClear = false;
		for ( let i = 1; i < this._lodPlanes.length; i ++ ) {
			const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
			const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ];
			this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
		}
		renderer.autoClear = autoClear;
	}
	/**
	 * This is a two-pass Gaussian blur for a cubemap. Normally this is done
	 * vertically and horizontally, but this breaks down on a cube. Here we apply
	 * the blur latitudinally (around the poles), and then longitudinally (towards
	 * the poles) to approximate the orthogonally-separable blur. It is least
	 * accurate at the poles, but still does a decent job.
	 */
	_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
		const pingPongRenderTarget = this._pingPongRenderTarget;
		this._halfBlur(
			cubeUVRenderTarget,
			pingPongRenderTarget,
			lodIn,
			lodOut,
			sigma,
			'latitudinal',
			poleAxis );
		this._halfBlur(
			pingPongRenderTarget,
			cubeUVRenderTarget,
			lodOut,
			lodOut,
			sigma,
			'longitudinal',
			poleAxis );
	}
	_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
		const renderer = this._renderer;
		const blurMaterial = this._blurMaterial;
		if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
			console.error(
				'blur direction must be either latitudinal or longitudinal!' );
		}
		// Number of standard deviations at which to cut off the discrete approximation.
		const STANDARD_DEVIATIONS = 3;
		const blurMesh = new Mesh( this._lodPlanes[ lodOut ], blurMaterial );
		const blurUniforms = blurMaterial.uniforms;
		const pixels = this._sizeLods[ lodIn ] - 1;
		const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
		const sigmaPixels = sigmaRadians / radiansPerPixel;
		const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
		if ( samples > MAX_SAMPLES ) {
			console.warn( `sigmaRadians, ${
				sigmaRadians}, is too large and will clip, as it requested ${
				samples} samples when the maximum is set to ${MAX_SAMPLES}` );
		}
		const weights = [];
		let sum = 0;
		for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
			const x = i / sigmaPixels;
			const weight = Math.exp( - x * x / 2 );
			weights.push( weight );
			if ( i === 0 ) {
				sum += weight;
			} else if ( i < samples ) {
				sum += 2 * weight;
			}
		}
		for ( let i = 0; i < weights.length; i ++ ) {
			weights[ i ] = weights[ i ] / sum;
		}
		blurUniforms[ 'envMap' ].value = targetIn.texture;
		blurUniforms[ 'samples' ].value = samples;
		blurUniforms[ 'weights' ].value = weights;
		blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
		if ( poleAxis ) {
			blurUniforms[ 'poleAxis' ].value = poleAxis;
		}
		const { _lodMax } = this;
		blurUniforms[ 'dTheta' ].value = radiansPerPixel;
		blurUniforms[ 'mipInt' ].value = _lodMax - lodIn;
		const outputSize = this._sizeLods[ lodOut ];
		const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
		const y = 4 * ( this._cubeSize - outputSize );
		_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
		renderer.setRenderTarget( targetOut );
		renderer.render( blurMesh, _flatCamera );
	}
}
function _createPlanes( lodMax ) {
	const lodPlanes = [];
	const sizeLods = [];
	const sigmas = [];
	let lod = lodMax;
	const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
	for ( let i = 0; i < totalLods; i ++ ) {
		const sizeLod = Math.pow( 2, lod );
		sizeLods.push( sizeLod );
		let sigma = 1.0 / sizeLod;
		if ( i > lodMax - LOD_MIN ) {
			sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
		} else if ( i === 0 ) {
			sigma = 0;
		}
		sigmas.push( sigma );
		const texelSize = 1.0 / ( sizeLod - 2 );
		const min = - texelSize;
		const max = 1 + texelSize;
		const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
		const cubeFaces = 6;
		const vertices = 6;
		const positionSize = 3;
		const uvSize = 2;
		const faceIndexSize = 1;
		const position = new Float32Array( positionSize * vertices * cubeFaces );
		const uv = new Float32Array( uvSize * vertices * cubeFaces );
		const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
		for ( let face = 0; face < cubeFaces; face ++ ) {
			const x = ( face % 3 ) * 2 / 3 - 1;
			const y = face > 2 ? 0 : - 1;
			const coordinates = [
				x, y, 0,
				x + 2 / 3, y, 0,
				x + 2 / 3, y + 1, 0,
				x, y, 0,
				x + 2 / 3, y + 1, 0,
				x, y + 1, 0
			];
			position.set( coordinates, positionSize * vertices * face );
			uv.set( uv1, uvSize * vertices * face );
			const fill = [ face, face, face, face, face, face ];
			faceIndex.set( fill, faceIndexSize * vertices * face );
		}
		const planes = new BufferGeometry();
		planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
		planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
		planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
		lodPlanes.push( planes );
		if ( lod > LOD_MIN ) {
			lod --;
		}
	}
	return { lodPlanes, sizeLods, sigmas };
}
function _createRenderTarget( width, height, params ) {
	const cubeUVRenderTarget = new WebGLRenderTarget( width, height, params );
	cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
	cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
	cubeUVRenderTarget.scissorTest = true;
	return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
	target.viewport.set( x, y, width, height );
	target.scissor.set( x, y, width, height );
}
function _getBlurShader( lodMax, width, height ) {
	const weights = new Float32Array( MAX_SAMPLES );
	const poleAxis = new Vector3( 0, 1, 0 );
	const shaderMaterial = new ShaderMaterial( {
		name: 'SphericalGaussianBlur',
		defines: {
			'n': MAX_SAMPLES,
			'CUBEUV_TEXEL_WIDTH': 1.0 / width,
			'CUBEUV_TEXEL_HEIGHT': 1.0 / height,
			'CUBEUV_MAX_MIP': `${lodMax}.0`,
		},
		uniforms: {
			'envMap': { value: null },
			'samples': { value: 1 },
			'weights': { value: weights },
			'latitudinal': { value: false },
			'dTheta': { value: 0 },
			'mipInt': { value: 0 },
			'poleAxis': { value: poleAxis }
		},
		vertexShader: _getCommonVertexShader(),
		fragmentShader: /* glsl */`
			precision mediump float;
			precision mediump int;
			varying vec3 vOutputDirection;
			uniform sampler2D envMap;
			uniform int samples;
			uniform float weights[ n ];
			uniform bool latitudinal;
			uniform float dTheta;
			uniform float mipInt;
			uniform vec3 poleAxis;
			#define ENVMAP_TYPE_CUBE_UV
			#include <cube_uv_reflection_fragment>
			vec3 getSample( float theta, vec3 axis ) {
				float cosTheta = cos( theta );
				// Rodrigues' axis-angle rotation
				vec3 sampleDirection = vOutputDirection * cosTheta
					+ cross( axis, vOutputDirection ) * sin( theta )
					+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
				return bilinearCubeUV( envMap, sampleDirection, mipInt );
			}
			void main() {
				vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
				if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
					axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
				}
				axis = normalize( axis );
				gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
				gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
				for ( int i = 1; i < n; i++ ) {
					if ( i >= samples ) {
						break;
					}
					float theta = dTheta * float( i );
					gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
					gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
				}
			}
		`,
		blending: NoBlending,
		depthTest: false,
		depthWrite: false
	} );
	return shaderMaterial;
}
function _getEquirectMaterial() {
	return new ShaderMaterial( {
		name: 'EquirectangularToCubeUV',
		uniforms: {
			'envMap': { value: null }
		},
		vertexShader: _getCommonVertexShader(),
		fragmentShader: /* glsl */`
			precision mediump float;
			precision mediump int;
			varying vec3 vOutputDirection;
			uniform sampler2D envMap;
			#include <common>
			void main() {
				vec3 outputDirection = normalize( vOutputDirection );
				vec2 uv = equirectUv( outputDirection );
				gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 );
			}
		`,
		blending: NoBlending,
		depthTest: false,
		depthWrite: false
	} );
}
function _getCubemapMaterial() {
	return new ShaderMaterial( {
		name: 'CubemapToCubeUV',
		uniforms: {
			'envMap': { value: null },
			'flipEnvMap': { value: - 1 }
		},
		vertexShader: _getCommonVertexShader(),
		fragmentShader: /* glsl */`
			precision mediump float;
			precision mediump int;
			uniform float flipEnvMap;
			varying vec3 vOutputDirection;
			uniform samplerCube envMap;
			void main() {
				gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) );
			}
		`,
		blending: NoBlending,
		depthTest: false,
		depthWrite: false
	} );
}
function _getCommonVertexShader() {
	return /* glsl */`
		precision mediump float;
		precision mediump int;
		attribute float faceIndex;
		varying vec3 vOutputDirection;
		// RH coordinate system; PMREM face-indexing convention
		vec3 getDirection( vec2 uv, float face ) {
			uv = 2.0 * uv - 1.0;
			vec3 direction = vec3( uv, 1.0 );
			if ( face == 0.0 ) {
				direction = direction.zyx; // ( 1, v, u ) pos x
			} else if ( face == 1.0 ) {
				direction = direction.xzy;
				direction.xz *= -1.0; // ( -u, 1, -v ) pos y
			} else if ( face == 2.0 ) {
				direction.x *= -1.0; // ( -u, v, 1 ) pos z
			} else if ( face == 3.0 ) {
				direction = direction.zyx;
				direction.xz *= -1.0; // ( -1, v, -u ) neg x
			} else if ( face == 4.0 ) {
				direction = direction.xzy;
				direction.xy *= -1.0; // ( -u, -1, v ) neg y
			} else if ( face == 5.0 ) {
				direction.z *= -1.0; // ( u, v, -1 ) neg z
			}
			return direction;
		}
		void main() {
			vOutputDirection = getDirection( uv, faceIndex );
			gl_Position = vec4( position, 1.0 );
		}
	`;
}
export { PMREMGenerator };