File: //var/www/aspa/three/addons/objects/Refractor.js
import {
	Color,
	Matrix4,
	Mesh,
	PerspectiveCamera,
	Plane,
	Quaternion,
	ShaderMaterial,
	UniformsUtils,
	Vector3,
	Vector4,
	WebGLRenderTarget,
	HalfFloatType
} from 'three';
class Refractor extends Mesh {
	constructor( geometry, options = {} ) {
		super( geometry );
		this.isRefractor = true;
		this.type = 'Refractor';
		this.camera = new PerspectiveCamera();
		const scope = this;
		const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0x7F7F7F );
		const textureWidth = options.textureWidth || 512;
		const textureHeight = options.textureHeight || 512;
		const clipBias = options.clipBias || 0;
		const shader = options.shader || Refractor.RefractorShader;
		const multisample = ( options.multisample !== undefined ) ? options.multisample : 4;
		//
		const virtualCamera = this.camera;
		virtualCamera.matrixAutoUpdate = false;
		virtualCamera.userData.refractor = true;
		//
		const refractorPlane = new Plane();
		const textureMatrix = new Matrix4();
		// render target
		const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight, { samples: multisample, type: HalfFloatType } );
		// material
		this.material = new ShaderMaterial( {
			name: ( shader.name !== undefined ) ? shader.name : 'unspecified',
			uniforms: UniformsUtils.clone( shader.uniforms ),
			vertexShader: shader.vertexShader,
			fragmentShader: shader.fragmentShader,
			transparent: true // ensures, refractors are drawn from farthest to closest
		} );
		this.material.uniforms[ 'color' ].value = color;
		this.material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;
		this.material.uniforms[ 'textureMatrix' ].value = textureMatrix;
		// functions
		const visible = ( function () {
			const refractorWorldPosition = new Vector3();
			const cameraWorldPosition = new Vector3();
			const rotationMatrix = new Matrix4();
			const view = new Vector3();
			const normal = new Vector3();
			return function visible( camera ) {
				refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
				cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
				view.subVectors( refractorWorldPosition, cameraWorldPosition );
				rotationMatrix.extractRotation( scope.matrixWorld );
				normal.set( 0, 0, 1 );
				normal.applyMatrix4( rotationMatrix );
				return view.dot( normal ) < 0;
			};
		} )();
		const updateRefractorPlane = ( function () {
			const normal = new Vector3();
			const position = new Vector3();
			const quaternion = new Quaternion();
			const scale = new Vector3();
			return function updateRefractorPlane() {
				scope.matrixWorld.decompose( position, quaternion, scale );
				normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize();
				// flip the normal because we want to cull everything above the plane
				normal.negate();
				refractorPlane.setFromNormalAndCoplanarPoint( normal, position );
			};
		} )();
		const updateVirtualCamera = ( function () {
			const clipPlane = new Plane();
			const clipVector = new Vector4();
			const q = new Vector4();
			return function updateVirtualCamera( camera ) {
				virtualCamera.matrixWorld.copy( camera.matrixWorld );
				virtualCamera.matrixWorldInverse.copy( virtualCamera.matrixWorld ).invert();
				virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
				virtualCamera.far = camera.far; // used in WebGLBackground
				// The following code creates an oblique view frustum for clipping.
				// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.
				// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16
				clipPlane.copy( refractorPlane );
				clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
				clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant );
				// calculate the clip-space corner point opposite the clipping plane and
				// transform it into camera space by multiplying it by the inverse of the projection matrix
				const projectionMatrix = virtualCamera.projectionMatrix;
				q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
				q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
				q.z = - 1.0;
				q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
				// calculate the scaled plane vector
				clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) );
				// replacing the third row of the projection matrix
				projectionMatrix.elements[ 2 ] = clipVector.x;
				projectionMatrix.elements[ 6 ] = clipVector.y;
				projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias;
				projectionMatrix.elements[ 14 ] = clipVector.w;
			};
		} )();
		// This will update the texture matrix that is used for projective texture mapping in the shader.
		// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf
		function updateTextureMatrix( camera ) {
			// this matrix does range mapping to [ 0, 1 ]
			textureMatrix.set(
				0.5, 0.0, 0.0, 0.5,
				0.0, 0.5, 0.0, 0.5,
				0.0, 0.0, 0.5, 0.5,
				0.0, 0.0, 0.0, 1.0
			);
			// we use "Object Linear Texgen", so we need to multiply the texture matrix T
			// (matrix above) with the projection and view matrix of the virtual camera
			// and the model matrix of the refractor
			textureMatrix.multiply( camera.projectionMatrix );
			textureMatrix.multiply( camera.matrixWorldInverse );
			textureMatrix.multiply( scope.matrixWorld );
		}
		//
		function render( renderer, scene, camera ) {
			scope.visible = false;
			const currentRenderTarget = renderer.getRenderTarget();
			const currentXrEnabled = renderer.xr.enabled;
			const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
			renderer.xr.enabled = false; // avoid camera modification
			renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows
			renderer.setRenderTarget( renderTarget );
			if ( renderer.autoClear === false ) renderer.clear();
			renderer.render( scene, virtualCamera );
			renderer.xr.enabled = currentXrEnabled;
			renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
			renderer.setRenderTarget( currentRenderTarget );
			// restore viewport
			const viewport = camera.viewport;
			if ( viewport !== undefined ) {
				renderer.state.viewport( viewport );
			}
			scope.visible = true;
		}
		//
		this.onBeforeRender = function ( renderer, scene, camera ) {
			// ensure refractors are rendered only once per frame
			if ( camera.userData.refractor === true ) return;
			// avoid rendering when the refractor is viewed from behind
			if ( ! visible( camera ) === true ) return;
			// update
			updateRefractorPlane();
			updateTextureMatrix( camera );
			updateVirtualCamera( camera );
			render( renderer, scene, camera );
		};
		this.getRenderTarget = function () {
			return renderTarget;
		};
		this.dispose = function () {
			renderTarget.dispose();
			scope.material.dispose();
		};
	}
}
Refractor.RefractorShader = {
	name: 'RefractorShader',
	uniforms: {
		'color': {
			value: null
		},
		'tDiffuse': {
			value: null
		},
		'textureMatrix': {
			value: null
		}
	},
	vertexShader: /* glsl */`
		uniform mat4 textureMatrix;
		varying vec4 vUv;
		void main() {
			vUv = textureMatrix * vec4( position, 1.0 );
			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
		}`,
	fragmentShader: /* glsl */`
		uniform vec3 color;
		uniform sampler2D tDiffuse;
		varying vec4 vUv;
		float blendOverlay( float base, float blend ) {
			return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );
		}
		vec3 blendOverlay( vec3 base, vec3 blend ) {
			return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );
		}
		void main() {
			vec4 base = texture2DProj( tDiffuse, vUv );
			gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );
			#include <tonemapping_fragment>
			#include <colorspace_fragment>
		}`
};
export { Refractor };