HEX
Server: Apache/2.4.41 (Ubuntu)
System: Linux vm8 5.4.0-216-generic #236-Ubuntu SMP Fri Apr 11 19:53:21 UTC 2025 x86_64
User: afleverb (1000)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //var/www/aspa/three/addons/objects/Lensflare.js
import {
	AdditiveBlending,
	Box2,
	BufferGeometry,
	Color,
	FramebufferTexture,
	InterleavedBuffer,
	InterleavedBufferAttribute,
	Mesh,
	MeshBasicMaterial,
	RawShaderMaterial,
	UnsignedByteType,
	Vector2,
	Vector3,
	Vector4
} from 'three';

class Lensflare extends Mesh {

	constructor() {

		super( Lensflare.Geometry, new MeshBasicMaterial( { opacity: 0, transparent: true } ) );

		this.isLensflare = true;

		this.type = 'Lensflare';
		this.frustumCulled = false;
		this.renderOrder = Infinity;

		//

		const positionScreen = new Vector3();
		const positionView = new Vector3();

		// textures

		const tempMap = new FramebufferTexture( 16, 16 );
		const occlusionMap = new FramebufferTexture( 16, 16 );

		let currentType = UnsignedByteType;

		// material

		const geometry = Lensflare.Geometry;

		const material1a = new RawShaderMaterial( {
			uniforms: {
				'scale': { value: null },
				'screenPosition': { value: null }
			},
			vertexShader: /* glsl */`

				precision highp float;

				uniform vec3 screenPosition;
				uniform vec2 scale;

				attribute vec3 position;

				void main() {

					gl_Position = vec4( position.xy * scale + screenPosition.xy, screenPosition.z, 1.0 );

				}`,

			fragmentShader: /* glsl */`

				precision highp float;

				void main() {

					gl_FragColor = vec4( 1.0, 0.0, 1.0, 1.0 );

				}`,
			depthTest: true,
			depthWrite: false,
			transparent: false
		} );

		const material1b = new RawShaderMaterial( {
			uniforms: {
				'map': { value: tempMap },
				'scale': { value: null },
				'screenPosition': { value: null }
			},
			vertexShader: /* glsl */`

				precision highp float;

				uniform vec3 screenPosition;
				uniform vec2 scale;

				attribute vec3 position;
				attribute vec2 uv;

				varying vec2 vUV;

				void main() {

					vUV = uv;

					gl_Position = vec4( position.xy * scale + screenPosition.xy, screenPosition.z, 1.0 );

				}`,

			fragmentShader: /* glsl */`

				precision highp float;

				uniform sampler2D map;

				varying vec2 vUV;

				void main() {

					gl_FragColor = texture2D( map, vUV );

				}`,
			depthTest: false,
			depthWrite: false,
			transparent: false
		} );

		// the following object is used for occlusionMap generation

		const mesh1 = new Mesh( geometry, material1a );

		//

		const elements = [];

		const shader = LensflareElement.Shader;

		const material2 = new RawShaderMaterial( {
			name: shader.name,
			uniforms: {
				'map': { value: null },
				'occlusionMap': { value: occlusionMap },
				'color': { value: new Color( 0xffffff ) },
				'scale': { value: new Vector2() },
				'screenPosition': { value: new Vector3() }
			},
			vertexShader: shader.vertexShader,
			fragmentShader: shader.fragmentShader,
			blending: AdditiveBlending,
			transparent: true,
			depthWrite: false
		} );

		const mesh2 = new Mesh( geometry, material2 );

		this.addElement = function ( element ) {

			elements.push( element );

		};

		//

		const scale = new Vector2();
		const screenPositionPixels = new Vector2();
		const validArea = new Box2();
		const viewport = new Vector4();

		this.onBeforeRender = function ( renderer, scene, camera ) {

			renderer.getCurrentViewport( viewport );

			const renderTarget = renderer.getRenderTarget();
			const type = ( renderTarget !== null ) ? renderTarget.texture.type : UnsignedByteType;

			if ( currentType !== type ) {

				tempMap.dispose();
				occlusionMap.dispose();

				tempMap.type = occlusionMap.type = type;

				currentType = type;

			}

			const invAspect = viewport.w / viewport.z;
			const halfViewportWidth = viewport.z / 2.0;
			const halfViewportHeight = viewport.w / 2.0;

			let size = 16 / viewport.w;
			scale.set( size * invAspect, size );

			validArea.min.set( viewport.x, viewport.y );
			validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );

			// calculate position in screen space

			positionView.setFromMatrixPosition( this.matrixWorld );
			positionView.applyMatrix4( camera.matrixWorldInverse );

			if ( positionView.z > 0 ) return; // lensflare is behind the camera

			positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix );

			// horizontal and vertical coordinate of the lower left corner of the pixels to copy

			screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8;
			screenPositionPixels.y = viewport.y + ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8;

			// screen cull

			if ( validArea.containsPoint( screenPositionPixels ) ) {

				// save current RGB to temp texture

				renderer.copyFramebufferToTexture( screenPositionPixels, tempMap );

				// render pink quad

				let uniforms = material1a.uniforms;
				uniforms[ 'scale' ].value = scale;
				uniforms[ 'screenPosition' ].value = positionScreen;

				renderer.renderBufferDirect( camera, null, geometry, material1a, mesh1, null );

				// copy result to occlusionMap

				renderer.copyFramebufferToTexture( screenPositionPixels, occlusionMap );

				// restore graphics

				uniforms = material1b.uniforms;
				uniforms[ 'scale' ].value = scale;
				uniforms[ 'screenPosition' ].value = positionScreen;

				renderer.renderBufferDirect( camera, null, geometry, material1b, mesh1, null );

				// render elements

				const vecX = - positionScreen.x * 2;
				const vecY = - positionScreen.y * 2;

				for ( let i = 0, l = elements.length; i < l; i ++ ) {

					const element = elements[ i ];

					const uniforms = material2.uniforms;

					uniforms[ 'color' ].value.copy( element.color );
					uniforms[ 'map' ].value = element.texture;
					uniforms[ 'screenPosition' ].value.x = positionScreen.x + vecX * element.distance;
					uniforms[ 'screenPosition' ].value.y = positionScreen.y + vecY * element.distance;

					size = element.size / viewport.w;
					const invAspect = viewport.w / viewport.z;

					uniforms[ 'scale' ].value.set( size * invAspect, size );

					material2.uniformsNeedUpdate = true;

					renderer.renderBufferDirect( camera, null, geometry, material2, mesh2, null );

				}

			}

		};

		this.dispose = function () {

			material1a.dispose();
			material1b.dispose();
			material2.dispose();

			tempMap.dispose();
			occlusionMap.dispose();

			for ( let i = 0, l = elements.length; i < l; i ++ ) {

				elements[ i ].texture.dispose();

			}

		};

	}

}

//

class LensflareElement {

	constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) {

		this.texture = texture;
		this.size = size;
		this.distance = distance;
		this.color = color;

	}

}

LensflareElement.Shader = {

	name: 'LensflareElementShader',

	uniforms: {

		'map': { value: null },
		'occlusionMap': { value: null },
		'color': { value: null },
		'scale': { value: null },
		'screenPosition': { value: null }

	},

	vertexShader: /* glsl */`

		precision highp float;

		uniform vec3 screenPosition;
		uniform vec2 scale;

		uniform sampler2D occlusionMap;

		attribute vec3 position;
		attribute vec2 uv;

		varying vec2 vUV;
		varying float vVisibility;

		void main() {

			vUV = uv;

			vec2 pos = position.xy;

			vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );
			visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );
			visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );
			visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );
			visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );
			visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );
			visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );
			visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );
			visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );

			vVisibility =        visibility.r / 9.0;
			vVisibility *= 1.0 - visibility.g / 9.0;
			vVisibility *=       visibility.b / 9.0;

			gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );

		}`,

	fragmentShader: /* glsl */`

		precision highp float;

		uniform sampler2D map;
		uniform vec3 color;

		varying vec2 vUV;
		varying float vVisibility;

		void main() {

			vec4 texture = texture2D( map, vUV );
			texture.a *= vVisibility;
			gl_FragColor = texture;
			gl_FragColor.rgb *= color;

		}`

};

Lensflare.Geometry = ( function () {

	const geometry = new BufferGeometry();

	const float32Array = new Float32Array( [
		- 1, - 1, 0, 0, 0,
		1, - 1, 0, 1, 0,
		1, 1, 0, 1, 1,
		- 1, 1, 0, 0, 1
	] );

	const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );

	geometry.setIndex( [ 0, 1, 2,	0, 2, 3 ] );
	geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
	geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );

	return geometry;

} )();

export { Lensflare, LensflareElement };