File: //var/www/aspa/three/addons/objects/Lensflare.js
import {
	AdditiveBlending,
	Box2,
	BufferGeometry,
	Color,
	FramebufferTexture,
	InterleavedBuffer,
	InterleavedBufferAttribute,
	Mesh,
	MeshBasicMaterial,
	RawShaderMaterial,
	UnsignedByteType,
	Vector2,
	Vector3,
	Vector4
} from 'three';
class Lensflare extends Mesh {
	constructor() {
		super( Lensflare.Geometry, new MeshBasicMaterial( { opacity: 0, transparent: true } ) );
		this.isLensflare = true;
		this.type = 'Lensflare';
		this.frustumCulled = false;
		this.renderOrder = Infinity;
		//
		const positionScreen = new Vector3();
		const positionView = new Vector3();
		// textures
		const tempMap = new FramebufferTexture( 16, 16 );
		const occlusionMap = new FramebufferTexture( 16, 16 );
		let currentType = UnsignedByteType;
		// material
		const geometry = Lensflare.Geometry;
		const material1a = new RawShaderMaterial( {
			uniforms: {
				'scale': { value: null },
				'screenPosition': { value: null }
			},
			vertexShader: /* glsl */`
				precision highp float;
				uniform vec3 screenPosition;
				uniform vec2 scale;
				attribute vec3 position;
				void main() {
					gl_Position = vec4( position.xy * scale + screenPosition.xy, screenPosition.z, 1.0 );
				}`,
			fragmentShader: /* glsl */`
				precision highp float;
				void main() {
					gl_FragColor = vec4( 1.0, 0.0, 1.0, 1.0 );
				}`,
			depthTest: true,
			depthWrite: false,
			transparent: false
		} );
		const material1b = new RawShaderMaterial( {
			uniforms: {
				'map': { value: tempMap },
				'scale': { value: null },
				'screenPosition': { value: null }
			},
			vertexShader: /* glsl */`
				precision highp float;
				uniform vec3 screenPosition;
				uniform vec2 scale;
				attribute vec3 position;
				attribute vec2 uv;
				varying vec2 vUV;
				void main() {
					vUV = uv;
					gl_Position = vec4( position.xy * scale + screenPosition.xy, screenPosition.z, 1.0 );
				}`,
			fragmentShader: /* glsl */`
				precision highp float;
				uniform sampler2D map;
				varying vec2 vUV;
				void main() {
					gl_FragColor = texture2D( map, vUV );
				}`,
			depthTest: false,
			depthWrite: false,
			transparent: false
		} );
		// the following object is used for occlusionMap generation
		const mesh1 = new Mesh( geometry, material1a );
		//
		const elements = [];
		const shader = LensflareElement.Shader;
		const material2 = new RawShaderMaterial( {
			name: shader.name,
			uniforms: {
				'map': { value: null },
				'occlusionMap': { value: occlusionMap },
				'color': { value: new Color( 0xffffff ) },
				'scale': { value: new Vector2() },
				'screenPosition': { value: new Vector3() }
			},
			vertexShader: shader.vertexShader,
			fragmentShader: shader.fragmentShader,
			blending: AdditiveBlending,
			transparent: true,
			depthWrite: false
		} );
		const mesh2 = new Mesh( geometry, material2 );
		this.addElement = function ( element ) {
			elements.push( element );
		};
		//
		const scale = new Vector2();
		const screenPositionPixels = new Vector2();
		const validArea = new Box2();
		const viewport = new Vector4();
		this.onBeforeRender = function ( renderer, scene, camera ) {
			renderer.getCurrentViewport( viewport );
			const renderTarget = renderer.getRenderTarget();
			const type = ( renderTarget !== null ) ? renderTarget.texture.type : UnsignedByteType;
			if ( currentType !== type ) {
				tempMap.dispose();
				occlusionMap.dispose();
				tempMap.type = occlusionMap.type = type;
				currentType = type;
			}
			const invAspect = viewport.w / viewport.z;
			const halfViewportWidth = viewport.z / 2.0;
			const halfViewportHeight = viewport.w / 2.0;
			let size = 16 / viewport.w;
			scale.set( size * invAspect, size );
			validArea.min.set( viewport.x, viewport.y );
			validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );
			// calculate position in screen space
			positionView.setFromMatrixPosition( this.matrixWorld );
			positionView.applyMatrix4( camera.matrixWorldInverse );
			if ( positionView.z > 0 ) return; // lensflare is behind the camera
			positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix );
			// horizontal and vertical coordinate of the lower left corner of the pixels to copy
			screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8;
			screenPositionPixels.y = viewport.y + ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8;
			// screen cull
			if ( validArea.containsPoint( screenPositionPixels ) ) {
				// save current RGB to temp texture
				renderer.copyFramebufferToTexture( screenPositionPixels, tempMap );
				// render pink quad
				let uniforms = material1a.uniforms;
				uniforms[ 'scale' ].value = scale;
				uniforms[ 'screenPosition' ].value = positionScreen;
				renderer.renderBufferDirect( camera, null, geometry, material1a, mesh1, null );
				// copy result to occlusionMap
				renderer.copyFramebufferToTexture( screenPositionPixels, occlusionMap );
				// restore graphics
				uniforms = material1b.uniforms;
				uniforms[ 'scale' ].value = scale;
				uniforms[ 'screenPosition' ].value = positionScreen;
				renderer.renderBufferDirect( camera, null, geometry, material1b, mesh1, null );
				// render elements
				const vecX = - positionScreen.x * 2;
				const vecY = - positionScreen.y * 2;
				for ( let i = 0, l = elements.length; i < l; i ++ ) {
					const element = elements[ i ];
					const uniforms = material2.uniforms;
					uniforms[ 'color' ].value.copy( element.color );
					uniforms[ 'map' ].value = element.texture;
					uniforms[ 'screenPosition' ].value.x = positionScreen.x + vecX * element.distance;
					uniforms[ 'screenPosition' ].value.y = positionScreen.y + vecY * element.distance;
					size = element.size / viewport.w;
					const invAspect = viewport.w / viewport.z;
					uniforms[ 'scale' ].value.set( size * invAspect, size );
					material2.uniformsNeedUpdate = true;
					renderer.renderBufferDirect( camera, null, geometry, material2, mesh2, null );
				}
			}
		};
		this.dispose = function () {
			material1a.dispose();
			material1b.dispose();
			material2.dispose();
			tempMap.dispose();
			occlusionMap.dispose();
			for ( let i = 0, l = elements.length; i < l; i ++ ) {
				elements[ i ].texture.dispose();
			}
		};
	}
}
//
class LensflareElement {
	constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) {
		this.texture = texture;
		this.size = size;
		this.distance = distance;
		this.color = color;
	}
}
LensflareElement.Shader = {
	name: 'LensflareElementShader',
	uniforms: {
		'map': { value: null },
		'occlusionMap': { value: null },
		'color': { value: null },
		'scale': { value: null },
		'screenPosition': { value: null }
	},
	vertexShader: /* glsl */`
		precision highp float;
		uniform vec3 screenPosition;
		uniform vec2 scale;
		uniform sampler2D occlusionMap;
		attribute vec3 position;
		attribute vec2 uv;
		varying vec2 vUV;
		varying float vVisibility;
		void main() {
			vUV = uv;
			vec2 pos = position.xy;
			vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );
			visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );
			visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );
			visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );
			visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );
			visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );
			visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );
			visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );
			visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );
			vVisibility =        visibility.r / 9.0;
			vVisibility *= 1.0 - visibility.g / 9.0;
			vVisibility *=       visibility.b / 9.0;
			gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );
		}`,
	fragmentShader: /* glsl */`
		precision highp float;
		uniform sampler2D map;
		uniform vec3 color;
		varying vec2 vUV;
		varying float vVisibility;
		void main() {
			vec4 texture = texture2D( map, vUV );
			texture.a *= vVisibility;
			gl_FragColor = texture;
			gl_FragColor.rgb *= color;
		}`
};
Lensflare.Geometry = ( function () {
	const geometry = new BufferGeometry();
	const float32Array = new Float32Array( [
		- 1, - 1, 0, 0, 0,
		1, - 1, 0, 1, 0,
		1, 1, 0, 1, 1,
		- 1, 1, 0, 0, 1
	] );
	const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
	geometry.setIndex( [ 0, 1, 2,	0, 2, 3 ] );
	geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
	geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
	return geometry;
} )();
export { Lensflare, LensflareElement };