File: //var/www/aspa/three/addons/modifiers/SimplifyModifier.js
import {
	BufferGeometry,
	Float32BufferAttribute,
	Vector2,
	Vector3,
	Vector4
} from 'three';
import * as BufferGeometryUtils from '../utils/BufferGeometryUtils.js';
/**
 *	Simplification Geometry Modifier
 *    - based on code and technique
 *	  - by Stan Melax in 1998
 *	  - Progressive Mesh type Polygon Reduction Algorithm
 *    - http://www.melax.com/polychop/
 */
const _cb = new Vector3(), _ab = new Vector3();
class SimplifyModifier {
	modify( geometry, count ) {
		geometry = geometry.clone();
		// currently morphAttributes are not supported
		delete geometry.morphAttributes.position;
		delete geometry.morphAttributes.normal;
		const attributes = geometry.attributes;
		// this modifier can only process indexed and non-indexed geomtries with at least a position attribute
		for ( const name in attributes ) {
			if ( name !== 'position' && name !== 'uv' && name !== 'normal' && name !== 'tangent' && name !== 'color' ) geometry.deleteAttribute( name );
		}
		geometry = BufferGeometryUtils.mergeVertices( geometry );
		//
		// put data of original geometry in different data structures
		//
		const vertices = [];
		const faces = [];
		// add vertices
		const positionAttribute = geometry.getAttribute( 'position' );
		const uvAttribute = geometry.getAttribute( 'uv' );
		const normalAttribute = geometry.getAttribute( 'normal' );
		const tangentAttribute = geometry.getAttribute( 'tangent' );
		const colorAttribute = geometry.getAttribute( 'color' );
		let t = null;
		let v2 = null;
		let nor = null;
		let col = null;
		for ( let i = 0; i < positionAttribute.count; i ++ ) {
			const v = new Vector3().fromBufferAttribute( positionAttribute, i );
			if ( uvAttribute ) {
				v2 = new Vector2().fromBufferAttribute( uvAttribute, i );
			}
			if ( normalAttribute ) {
				nor = new Vector3().fromBufferAttribute( normalAttribute, i );
			}
			if ( tangentAttribute ) {
				t = new Vector4().fromBufferAttribute( tangentAttribute, i );
			}
			if ( colorAttribute ) {
				col = new THREE.Color().fromBufferAttribute( colorAttribute, i );
			}
			const vertex = new Vertex( v, v2, nor, t, col );
			vertices.push( vertex );
		}
		// add faces
		let index = geometry.getIndex();
		if ( index !== null ) {
			for ( let i = 0; i < index.count; i += 3 ) {
				const a = index.getX( i );
				const b = index.getX( i + 1 );
				const c = index.getX( i + 2 );
				const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );
				faces.push( triangle );
			}
		} else {
			for ( let i = 0; i < positionAttribute.count; i += 3 ) {
				const a = i;
				const b = i + 1;
				const c = i + 2;
				const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );
				faces.push( triangle );
			}
		}
		// compute all edge collapse costs
		for ( let i = 0, il = vertices.length; i < il; i ++ ) {
			computeEdgeCostAtVertex( vertices[ i ] );
		}
		let nextVertex;
		let z = count;
		while ( z -- ) {
			nextVertex = minimumCostEdge( vertices );
			if ( ! nextVertex ) {
				console.log( 'THREE.SimplifyModifier: No next vertex' );
				break;
			}
			collapse( vertices, faces, nextVertex, nextVertex.collapseNeighbor );
		}
		//
		const simplifiedGeometry = new BufferGeometry();
		const position = [];
		const uv = [];
		const normal = [];
		const tangent = [];
		const color = [];
		index = [];
		//
		for ( let i = 0; i < vertices.length; i ++ ) {
			const vertex = vertices[ i ];
			position.push( vertex.position.x, vertex.position.y, vertex.position.z );
			if ( vertex.uv ) {
				uv.push( vertex.uv.x, vertex.uv.y );
			}
			if ( vertex.normal ) {
				normal.push( vertex.normal.x, vertex.normal.y, vertex.normal.z );
			}
			if ( vertex.tangent ) {
				tangent.push( vertex.tangent.x, vertex.tangent.y, vertex.tangent.z, vertex.tangent.w );
			}
			if ( vertex.color ) {
				color.push( vertex.color.r, vertex.color.g, vertex.color.b );
			}
			// cache final index to GREATLY speed up faces reconstruction
			vertex.id = i;
		}
		//
		for ( let i = 0; i < faces.length; i ++ ) {
			const face = faces[ i ];
			index.push( face.v1.id, face.v2.id, face.v3.id );
		}
		simplifiedGeometry.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );
		if ( uv.length > 0 ) simplifiedGeometry.setAttribute( 'uv', new Float32BufferAttribute( uv, 2 ) );
		if ( normal.length > 0 ) simplifiedGeometry.setAttribute( 'normal', new Float32BufferAttribute( normal, 3 ) );
		if ( tangent.length > 0 ) simplifiedGeometry.setAttribute( 'tangent', new Float32BufferAttribute( tangent, 4 ) );
		if ( color.length > 0 ) simplifiedGeometry.setAttribute( 'color', new Float32BufferAttribute( color, 3 ) );
		simplifiedGeometry.setIndex( index );
		return simplifiedGeometry;
	}
}
function pushIfUnique( array, object ) {
	if ( array.indexOf( object ) === - 1 ) array.push( object );
}
function removeFromArray( array, object ) {
	const k = array.indexOf( object );
	if ( k > - 1 ) array.splice( k, 1 );
}
function computeEdgeCollapseCost( u, v ) {
	// if we collapse edge uv by moving u to v then how
	// much different will the model change, i.e. the "error".
	const edgelength = v.position.distanceTo( u.position );
	let curvature = 0;
	const sideFaces = [];
	// find the "sides" triangles that are on the edge uv
	for ( let i = 0, il = u.faces.length; i < il; i ++ ) {
		const face = u.faces[ i ];
		if ( face.hasVertex( v ) ) {
			sideFaces.push( face );
		}
	}
	// use the triangle facing most away from the sides
	// to determine our curvature term
	for ( let i = 0, il = u.faces.length; i < il; i ++ ) {
		let minCurvature = 1;
		const face = u.faces[ i ];
		for ( let j = 0; j < sideFaces.length; j ++ ) {
			const sideFace = sideFaces[ j ];
			// use dot product of face normals.
			const dotProd = face.normal.dot( sideFace.normal );
			minCurvature = Math.min( minCurvature, ( 1.001 - dotProd ) / 2 );
		}
		curvature = Math.max( curvature, minCurvature );
	}
	// crude approach in attempt to preserve borders
	// though it seems not to be totally correct
	const borders = 0;
	if ( sideFaces.length < 2 ) {
		// we add some arbitrary cost for borders,
		// borders += 10;
		curvature = 1;
	}
	const amt = edgelength * curvature + borders;
	return amt;
}
function computeEdgeCostAtVertex( v ) {
	// compute the edge collapse cost for all edges that start
	// from vertex v.  Since we are only interested in reducing
	// the object by selecting the min cost edge at each step, we
	// only cache the cost of the least cost edge at this vertex
	// (in member variable collapse) as well as the value of the
	// cost (in member variable collapseCost).
	if ( v.neighbors.length === 0 ) {
		// collapse if no neighbors.
		v.collapseNeighbor = null;
		v.collapseCost = - 0.01;
		return;
	}
	v.collapseCost = 100000;
	v.collapseNeighbor = null;
	// search all neighboring edges for "least cost" edge
	for ( let i = 0; i < v.neighbors.length; i ++ ) {
		const collapseCost = computeEdgeCollapseCost( v, v.neighbors[ i ] );
		if ( ! v.collapseNeighbor ) {
			v.collapseNeighbor = v.neighbors[ i ];
			v.collapseCost = collapseCost;
			v.minCost = collapseCost;
			v.totalCost = 0;
			v.costCount = 0;
		}
		v.costCount ++;
		v.totalCost += collapseCost;
		if ( collapseCost < v.minCost ) {
			v.collapseNeighbor = v.neighbors[ i ];
			v.minCost = collapseCost;
		}
	}
	// we average the cost of collapsing at this vertex
	v.collapseCost = v.totalCost / v.costCount;
	// v.collapseCost = v.minCost;
}
function removeVertex( v, vertices ) {
	console.assert( v.faces.length === 0 );
	while ( v.neighbors.length ) {
		const n = v.neighbors.pop();
		removeFromArray( n.neighbors, v );
	}
	removeFromArray( vertices, v );
}
function removeFace( f, faces ) {
	removeFromArray( faces, f );
	if ( f.v1 ) removeFromArray( f.v1.faces, f );
	if ( f.v2 ) removeFromArray( f.v2.faces, f );
	if ( f.v3 ) removeFromArray( f.v3.faces, f );
	// TODO optimize this!
	const vs = [ f.v1, f.v2, f.v3 ];
	for ( let i = 0; i < 3; i ++ ) {
		const v1 = vs[ i ];
		const v2 = vs[ ( i + 1 ) % 3 ];
		if ( ! v1 || ! v2 ) continue;
		v1.removeIfNonNeighbor( v2 );
		v2.removeIfNonNeighbor( v1 );
	}
}
function collapse( vertices, faces, u, v ) {
	// Collapse the edge uv by moving vertex u onto v
	if ( ! v ) {
		// u is a vertex all by itself so just delete it..
		removeVertex( u, vertices );
		return;
	}
	if ( v.uv ) {
		u.uv.copy( v.uv );
	}
	if ( v.normal ) {
		v.normal.add( u.normal ).normalize();
	}
	if ( v.tangent ) {
		v.tangent.add( u.tangent ).normalize();
	}
	const tmpVertices = [];
	for ( let i = 0; i < u.neighbors.length; i ++ ) {
		tmpVertices.push( u.neighbors[ i ] );
	}
	// delete triangles on edge uv:
	for ( let i = u.faces.length - 1; i >= 0; i -- ) {
		if ( u.faces[ i ] && u.faces[ i ].hasVertex( v ) ) {
			removeFace( u.faces[ i ], faces );
		}
	}
	// update remaining triangles to have v instead of u
	for ( let i = u.faces.length - 1; i >= 0; i -- ) {
		u.faces[ i ].replaceVertex( u, v );
	}
	removeVertex( u, vertices );
	// recompute the edge collapse costs in neighborhood
	for ( let i = 0; i < tmpVertices.length; i ++ ) {
		computeEdgeCostAtVertex( tmpVertices[ i ] );
	}
}
function minimumCostEdge( vertices ) {
	// O(n * n) approach. TODO optimize this
	let least = vertices[ 0 ];
	for ( let i = 0; i < vertices.length; i ++ ) {
		if ( vertices[ i ].collapseCost < least.collapseCost ) {
			least = vertices[ i ];
		}
	}
	return least;
}
// we use a triangle class to represent structure of face slightly differently
class Triangle {
	constructor( v1, v2, v3, a, b, c ) {
		this.a = a;
		this.b = b;
		this.c = c;
		this.v1 = v1;
		this.v2 = v2;
		this.v3 = v3;
		this.normal = new Vector3();
		this.computeNormal();
		v1.faces.push( this );
		v1.addUniqueNeighbor( v2 );
		v1.addUniqueNeighbor( v3 );
		v2.faces.push( this );
		v2.addUniqueNeighbor( v1 );
		v2.addUniqueNeighbor( v3 );
		v3.faces.push( this );
		v3.addUniqueNeighbor( v1 );
		v3.addUniqueNeighbor( v2 );
	}
	computeNormal() {
		const vA = this.v1.position;
		const vB = this.v2.position;
		const vC = this.v3.position;
		_cb.subVectors( vC, vB );
		_ab.subVectors( vA, vB );
		_cb.cross( _ab ).normalize();
		this.normal.copy( _cb );
	}
	hasVertex( v ) {
		return v === this.v1 || v === this.v2 || v === this.v3;
	}
	replaceVertex( oldv, newv ) {
		if ( oldv === this.v1 ) this.v1 = newv;
		else if ( oldv === this.v2 ) this.v2 = newv;
		else if ( oldv === this.v3 ) this.v3 = newv;
		removeFromArray( oldv.faces, this );
		newv.faces.push( this );
		oldv.removeIfNonNeighbor( this.v1 );
		this.v1.removeIfNonNeighbor( oldv );
		oldv.removeIfNonNeighbor( this.v2 );
		this.v2.removeIfNonNeighbor( oldv );
		oldv.removeIfNonNeighbor( this.v3 );
		this.v3.removeIfNonNeighbor( oldv );
		this.v1.addUniqueNeighbor( this.v2 );
		this.v1.addUniqueNeighbor( this.v3 );
		this.v2.addUniqueNeighbor( this.v1 );
		this.v2.addUniqueNeighbor( this.v3 );
		this.v3.addUniqueNeighbor( this.v1 );
		this.v3.addUniqueNeighbor( this.v2 );
		this.computeNormal();
	}
}
class Vertex {
	constructor( v, uv, normal, tangent, color ) {
		this.position = v;
		this.uv = uv;
		this.normal = normal;
		this.tangent = tangent;
		this.color = color;
		this.id = - 1; // external use position in vertices list (for e.g. face generation)
		this.faces = []; // faces vertex is connected
		this.neighbors = []; // neighbouring vertices aka "adjacentVertices"
		// these will be computed in computeEdgeCostAtVertex()
		this.collapseCost = 0; // cost of collapsing this vertex, the less the better. aka objdist
		this.collapseNeighbor = null; // best candinate for collapsing
	}
	addUniqueNeighbor( vertex ) {
		pushIfUnique( this.neighbors, vertex );
	}
	removeIfNonNeighbor( n ) {
		const neighbors = this.neighbors;
		const faces = this.faces;
		const offset = neighbors.indexOf( n );
		if ( offset === - 1 ) return;
		for ( let i = 0; i < faces.length; i ++ ) {
			if ( faces[ i ].hasVertex( n ) ) return;
		}
		neighbors.splice( offset, 1 );
	}
}
export { SimplifyModifier };