File: //var/www/aspa/three/addons/math/Octree.js
import {
	Box3,
	Line3,
	Plane,
	Sphere,
	Triangle,
	Vector3
} from 'three';
import { Capsule } from './Capsule.js';
const _v1 = new Vector3();
const _v2 = new Vector3();
const _point1 = new Vector3();
const _point2 = new Vector3();
const _plane = new Plane();
const _line1 = new Line3();
const _line2 = new Line3();
const _sphere = new Sphere();
const _capsule = new Capsule();
const _temp1 = new Vector3();
const _temp2 = new Vector3();
const _temp3 = new Vector3();
const EPS = 1e-10;
function lineToLineClosestPoints( line1, line2, target1 = null, target2 = null ) {
	const r = _temp1.copy( line1.end ).sub( line1.start );
	const s = _temp2.copy( line2.end ).sub( line2.start );
	const w = _temp3.copy( line2.start ).sub( line1.start );
	const a = r.dot( s ),
		b = r.dot( r ),
		c = s.dot( s ),
		d = s.dot( w ),
		e = r.dot( w );
	let t1, t2;
	const divisor = b * c - a * a;
	if ( Math.abs( divisor ) < EPS ) {
		const d1 = - d / c;
		const d2 = ( a - d ) / c;
		if ( Math.abs( d1 - 0.5 ) < Math.abs( d2 - 0.5 ) ) {
			t1 = 0;
			t2 = d1;
		} else {
			t1 = 1;
			t2 = d2;
		}
	} else {
		t1 = ( d * a + e * c ) / divisor;
		t2 = ( t1 * a - d ) / c;
	}
	t2 = Math.max( 0, Math.min( 1, t2 ) );
	t1 = Math.max( 0, Math.min( 1, t1 ) );
	if ( target1 ) {
		target1.copy( r ).multiplyScalar( t1 ).add( line1.start );
	}
	if ( target2 ) {
		target2.copy( s ).multiplyScalar( t2 ).add( line2.start );
	}
}
class Octree {
	constructor( box ) {
		this.box = box;
		this.bounds = new Box3();
		this.subTrees = [];
		this.triangles = [];
	}
	addTriangle( triangle ) {
		this.bounds.min.x = Math.min( this.bounds.min.x, triangle.a.x, triangle.b.x, triangle.c.x );
		this.bounds.min.y = Math.min( this.bounds.min.y, triangle.a.y, triangle.b.y, triangle.c.y );
		this.bounds.min.z = Math.min( this.bounds.min.z, triangle.a.z, triangle.b.z, triangle.c.z );
		this.bounds.max.x = Math.max( this.bounds.max.x, triangle.a.x, triangle.b.x, triangle.c.x );
		this.bounds.max.y = Math.max( this.bounds.max.y, triangle.a.y, triangle.b.y, triangle.c.y );
		this.bounds.max.z = Math.max( this.bounds.max.z, triangle.a.z, triangle.b.z, triangle.c.z );
		this.triangles.push( triangle );
		return this;
	}
	calcBox() {
		this.box = this.bounds.clone();
		// offset small amount to account for regular grid
		this.box.min.x -= 0.01;
		this.box.min.y -= 0.01;
		this.box.min.z -= 0.01;
		return this;
	}
	split( level ) {
		if ( ! this.box ) return;
		const subTrees = [];
		const halfsize = _v2.copy( this.box.max ).sub( this.box.min ).multiplyScalar( 0.5 );
		for ( let x = 0; x < 2; x ++ ) {
			for ( let y = 0; y < 2; y ++ ) {
				for ( let z = 0; z < 2; z ++ ) {
					const box = new Box3();
					const v = _v1.set( x, y, z );
					box.min.copy( this.box.min ).add( v.multiply( halfsize ) );
					box.max.copy( box.min ).add( halfsize );
					subTrees.push( new Octree( box ) );
				}
			}
		}
		let triangle;
		while ( triangle = this.triangles.pop() ) {
			for ( let i = 0; i < subTrees.length; i ++ ) {
				if ( subTrees[ i ].box.intersectsTriangle( triangle ) ) {
					subTrees[ i ].triangles.push( triangle );
				}
			}
		}
		for ( let i = 0; i < subTrees.length; i ++ ) {
			const len = subTrees[ i ].triangles.length;
			if ( len > 8 && level < 16 ) {
				subTrees[ i ].split( level + 1 );
			}
			if ( len !== 0 ) {
				this.subTrees.push( subTrees[ i ] );
			}
		}
		return this;
	}
	build() {
		this.calcBox();
		this.split( 0 );
		return this;
	}
	getRayTriangles( ray, triangles ) {
		for ( let i = 0; i < this.subTrees.length; i ++ ) {
			const subTree = this.subTrees[ i ];
			if ( ! ray.intersectsBox( subTree.box ) ) continue;
			if ( subTree.triangles.length > 0 ) {
				for ( let j = 0; j < subTree.triangles.length; j ++ ) {
					if ( triangles.indexOf( subTree.triangles[ j ] ) === - 1 ) triangles.push( subTree.triangles[ j ] );
				}
			} else {
				subTree.getRayTriangles( ray, triangles );
			}
		}
		return triangles;
	}
	triangleCapsuleIntersect( capsule, triangle ) {
		triangle.getPlane( _plane );
		const d1 = _plane.distanceToPoint( capsule.start ) - capsule.radius;
		const d2 = _plane.distanceToPoint( capsule.end ) - capsule.radius;
		if ( ( d1 > 0 && d2 > 0 ) || ( d1 < - capsule.radius && d2 < - capsule.radius ) ) {
			return false;
		}
		const delta = Math.abs( d1 / ( Math.abs( d1 ) + Math.abs( d2 ) ) );
		const intersectPoint = _v1.copy( capsule.start ).lerp( capsule.end, delta );
		if ( triangle.containsPoint( intersectPoint ) ) {
			return { normal: _plane.normal.clone(), point: intersectPoint.clone(), depth: Math.abs( Math.min( d1, d2 ) ) };
		}
		const r2 = capsule.radius * capsule.radius;
		const line1 = _line1.set( capsule.start, capsule.end );
		const lines = [
			[ triangle.a, triangle.b ],
			[ triangle.b, triangle.c ],
			[ triangle.c, triangle.a ]
		];
		for ( let i = 0; i < lines.length; i ++ ) {
			const line2 = _line2.set( lines[ i ][ 0 ], lines[ i ][ 1 ] );
			lineToLineClosestPoints( line1, line2, _point1, _point2 );
			if ( _point1.distanceToSquared( _point2 ) < r2 ) {
				return {
					normal: _point1.clone().sub( _point2 ).normalize(),
					point: _point2.clone(),
					depth: capsule.radius - _point1.distanceTo( _point2 )
				};
			}
		}
		return false;
	}
	triangleSphereIntersect( sphere, triangle ) {
		triangle.getPlane( _plane );
		if ( ! sphere.intersectsPlane( _plane ) ) return false;
		const depth = Math.abs( _plane.distanceToSphere( sphere ) );
		const r2 = sphere.radius * sphere.radius - depth * depth;
		const plainPoint = _plane.projectPoint( sphere.center, _v1 );
		if ( triangle.containsPoint( sphere.center ) ) {
			return { normal: _plane.normal.clone(), point: plainPoint.clone(), depth: Math.abs( _plane.distanceToSphere( sphere ) ) };
		}
		const lines = [
			[ triangle.a, triangle.b ],
			[ triangle.b, triangle.c ],
			[ triangle.c, triangle.a ]
		];
		for ( let i = 0; i < lines.length; i ++ ) {
			_line1.set( lines[ i ][ 0 ], lines[ i ][ 1 ] );
			_line1.closestPointToPoint( plainPoint, true, _v2 );
			const d = _v2.distanceToSquared( sphere.center );
			if ( d < r2 ) {
				return { normal: sphere.center.clone().sub( _v2 ).normalize(), point: _v2.clone(), depth: sphere.radius - Math.sqrt( d ) };
			}
		}
		return false;
	}
	getSphereTriangles( sphere, triangles ) {
		for ( let i = 0; i < this.subTrees.length; i ++ ) {
			const subTree = this.subTrees[ i ];
			if ( ! sphere.intersectsBox( subTree.box ) ) continue;
			if ( subTree.triangles.length > 0 ) {
				for ( let j = 0; j < subTree.triangles.length; j ++ ) {
					if ( triangles.indexOf( subTree.triangles[ j ] ) === - 1 ) triangles.push( subTree.triangles[ j ] );
				}
			} else {
				subTree.getSphereTriangles( sphere, triangles );
			}
		}
	}
	getCapsuleTriangles( capsule, triangles ) {
		for ( let i = 0; i < this.subTrees.length; i ++ ) {
			const subTree = this.subTrees[ i ];
			if ( ! capsule.intersectsBox( subTree.box ) ) continue;
			if ( subTree.triangles.length > 0 ) {
				for ( let j = 0; j < subTree.triangles.length; j ++ ) {
					if ( triangles.indexOf( subTree.triangles[ j ] ) === - 1 ) triangles.push( subTree.triangles[ j ] );
				}
			} else {
				subTree.getCapsuleTriangles( capsule, triangles );
			}
		}
	}
	sphereIntersect( sphere ) {
		_sphere.copy( sphere );
		const triangles = [];
		let result, hit = false;
		this.getSphereTriangles( sphere, triangles );
		for ( let i = 0; i < triangles.length; i ++ ) {
			if ( result = this.triangleSphereIntersect( _sphere, triangles[ i ] ) ) {
				hit = true;
				_sphere.center.add( result.normal.multiplyScalar( result.depth ) );
			}
		}
		if ( hit ) {
			const collisionVector = _sphere.center.clone().sub( sphere.center );
			const depth = collisionVector.length();
			return { normal: collisionVector.normalize(), depth: depth };
		}
		return false;
	}
	capsuleIntersect( capsule ) {
		_capsule.copy( capsule );
		const triangles = [];
		let result, hit = false;
		this.getCapsuleTriangles( _capsule, triangles );
		for ( let i = 0; i < triangles.length; i ++ ) {
			if ( result = this.triangleCapsuleIntersect( _capsule, triangles[ i ] ) ) {
				hit = true;
				_capsule.translate( result.normal.multiplyScalar( result.depth ) );
			}
		}
		if ( hit ) {
			const collisionVector = _capsule.getCenter( new Vector3() ).sub( capsule.getCenter( _v1 ) );
			const depth = collisionVector.length();
			return { normal: collisionVector.normalize(), depth: depth };
		}
		return false;
	}
	rayIntersect( ray ) {
		if ( ray.direction.length() === 0 ) return;
		const triangles = [];
		let triangle, position, distance = 1e100;
		this.getRayTriangles( ray, triangles );
		for ( let i = 0; i < triangles.length; i ++ ) {
			const result = ray.intersectTriangle( triangles[ i ].a, triangles[ i ].b, triangles[ i ].c, true, _v1 );
			if ( result ) {
				const newdistance = result.sub( ray.origin ).length();
				if ( distance > newdistance ) {
					position = result.clone().add( ray.origin );
					distance = newdistance;
					triangle = triangles[ i ];
				}
			}
		}
		return distance < 1e100 ? { distance: distance, triangle: triangle, position: position } : false;
	}
	fromGraphNode( group ) {
		group.updateWorldMatrix( true, true );
		group.traverse( ( obj ) => {
			if ( obj.isMesh === true ) {
				let geometry, isTemp = false;
				if ( obj.geometry.index !== null ) {
					isTemp = true;
					geometry = obj.geometry.toNonIndexed();
				} else {
					geometry = obj.geometry;
				}
				const positionAttribute = geometry.getAttribute( 'position' );
				for ( let i = 0; i < positionAttribute.count; i += 3 ) {
					const v1 = new Vector3().fromBufferAttribute( positionAttribute, i );
					const v2 = new Vector3().fromBufferAttribute( positionAttribute, i + 1 );
					const v3 = new Vector3().fromBufferAttribute( positionAttribute, i + 2 );
					v1.applyMatrix4( obj.matrixWorld );
					v2.applyMatrix4( obj.matrixWorld );
					v3.applyMatrix4( obj.matrixWorld );
					this.addTriangle( new Triangle( v1, v2, v3 ) );
				}
				if ( isTemp ) {
					geometry.dispose();
				}
			}
		} );
		this.build();
		return this;
	}
	clear() {
		this.box = null;
		this.bounds.makeEmpty();
		this.subTrees.length = 0;
		this.triangles.length = 0;
		return this;
	}
}
export { Octree };