File: //var/www/aspa/three/addons/loaders/NRRDLoader.js
import {
	FileLoader,
	Loader,
	Matrix4,
	Vector3
} from 'three';
import * as fflate from '../libs/fflate.module.js';
import { Volume } from '../misc/Volume.js';
class NRRDLoader extends Loader {
	constructor( manager ) {
		super( manager );
	}
	load( url, onLoad, onProgress, onError ) {
		const scope = this;
		const loader = new FileLoader( scope.manager );
		loader.setPath( scope.path );
		loader.setResponseType( 'arraybuffer' );
		loader.setRequestHeader( scope.requestHeader );
		loader.setWithCredentials( scope.withCredentials );
		loader.load( url, function ( data ) {
			try {
				onLoad( scope.parse( data ) );
			} catch ( e ) {
				if ( onError ) {
					onError( e );
				} else {
					console.error( e );
				}
				scope.manager.itemError( url );
			}
		}, onProgress, onError );
	}
	/**
	 *
	 * @param {boolean} segmentation is a option for user to choose
   	 */
	setSegmentation( segmentation ) {
	    this.segmentation = segmentation;
	}
	parse( data ) {
		// this parser is largely inspired from the XTK NRRD parser : https://github.com/xtk/X
		let _data = data;
		let _dataPointer = 0;
		const _nativeLittleEndian = new Int8Array( new Int16Array( [ 1 ] ).buffer )[ 0 ] > 0;
		const _littleEndian = true;
		const headerObject = {};
		function scan( type, chunks ) {
			let _chunkSize = 1;
			let _array_type = Uint8Array;
			switch ( type ) {
				// 1 byte data types
				case 'uchar':
					break;
				case 'schar':
					_array_type = Int8Array;
					break;
				// 2 byte data types
				case 'ushort':
					_array_type = Uint16Array;
					_chunkSize = 2;
					break;
				case 'sshort':
					_array_type = Int16Array;
					_chunkSize = 2;
					break;
				// 4 byte data types
				case 'uint':
					_array_type = Uint32Array;
					_chunkSize = 4;
					break;
				case 'sint':
					_array_type = Int32Array;
					_chunkSize = 4;
					break;
				case 'float':
					_array_type = Float32Array;
					_chunkSize = 4;
					break;
				case 'complex':
					_array_type = Float64Array;
					_chunkSize = 8;
					break;
				case 'double':
					_array_type = Float64Array;
					_chunkSize = 8;
					break;
			}
			// increase the data pointer in-place
			let _bytes = new _array_type( _data.slice( _dataPointer,
				_dataPointer += chunks * _chunkSize ) );
			// if required, flip the endianness of the bytes
			if ( _nativeLittleEndian != _littleEndian ) {
				// we need to flip here since the format doesn't match the native endianness
				_bytes = flipEndianness( _bytes, _chunkSize );
			}
			// return the byte array
			return _bytes;
		}
		//Flips typed array endianness in-place. Based on https://github.com/kig/DataStream.js/blob/master/DataStream.js.
		function flipEndianness( array, chunkSize ) {
			const u8 = new Uint8Array( array.buffer, array.byteOffset, array.byteLength );
			for ( let i = 0; i < array.byteLength; i += chunkSize ) {
				for ( let j = i + chunkSize - 1, k = i; j > k; j --, k ++ ) {
					const tmp = u8[ k ];
					u8[ k ] = u8[ j ];
					u8[ j ] = tmp;
				}
			}
			return array;
		}
		//parse the header
		function parseHeader( header ) {
			let data, field, fn, i, l, m, _i, _len;
			const lines = header.split( /\r?\n/ );
			for ( _i = 0, _len = lines.length; _i < _len; _i ++ ) {
				l = lines[ _i ];
				if ( l.match( /NRRD\d+/ ) ) {
					headerObject.isNrrd = true;
				} else if ( ! l.match( /^#/ ) && ( m = l.match( /(.*):(.*)/ ) ) ) {
					field = m[ 1 ].trim();
					data = m[ 2 ].trim();
					fn = _fieldFunctions[ field ];
					if ( fn ) {
						fn.call( headerObject, data );
					} else {
						headerObject[ field ] = data;
					}
				}
			}
			if ( ! headerObject.isNrrd ) {
				throw new Error( 'Not an NRRD file' );
			}
			if ( headerObject.encoding === 'bz2' || headerObject.encoding === 'bzip2' ) {
				throw new Error( 'Bzip is not supported' );
			}
			if ( ! headerObject.vectors ) {
				//if no space direction is set, let's use the identity
				headerObject.vectors = [ ];
				headerObject.vectors.push( [ 1, 0, 0 ] );
				headerObject.vectors.push( [ 0, 1, 0 ] );
				headerObject.vectors.push( [ 0, 0, 1 ] );
				//apply spacing if defined
				if ( headerObject.spacings ) {
					for ( i = 0; i <= 2; i ++ ) {
						if ( ! isNaN( headerObject.spacings[ i ] ) ) {
							for ( let j = 0; j <= 2; j ++ ) {
								headerObject.vectors[ i ][ j ] *= headerObject.spacings[ i ];
							}
						}
					}
				}
			}
		}
		//parse the data when registred as one of this type : 'text', 'ascii', 'txt'
		function parseDataAsText( data, start, end ) {
			let number = '';
			start = start || 0;
			end = end || data.length;
			let value;
			//length of the result is the product of the sizes
			const lengthOfTheResult = headerObject.sizes.reduce( function ( previous, current ) {
				return previous * current;
			}, 1 );
			let base = 10;
			if ( headerObject.encoding === 'hex' ) {
				base = 16;
			}
			const result = new headerObject.__array( lengthOfTheResult );
			let resultIndex = 0;
			let parsingFunction = parseInt;
			if ( headerObject.__array === Float32Array || headerObject.__array === Float64Array ) {
				parsingFunction = parseFloat;
			}
			for ( let i = start; i < end; i ++ ) {
				value = data[ i ];
				//if value is not a space
				if ( ( value < 9 || value > 13 ) && value !== 32 ) {
					number += String.fromCharCode( value );
				} else {
					if ( number !== '' ) {
						result[ resultIndex ] = parsingFunction( number, base );
						resultIndex ++;
					}
					number = '';
				}
			}
			if ( number !== '' ) {
				result[ resultIndex ] = parsingFunction( number, base );
				resultIndex ++;
			}
			return result;
		}
		const _bytes = scan( 'uchar', data.byteLength );
		const _length = _bytes.length;
		let _header = null;
		let _data_start = 0;
		let i;
		for ( i = 1; i < _length; i ++ ) {
			if ( _bytes[ i - 1 ] == 10 && _bytes[ i ] == 10 ) {
				// we found two line breaks in a row
				// now we know what the header is
				_header = this.parseChars( _bytes, 0, i - 2 );
				// this is were the data starts
				_data_start = i + 1;
				break;
			}
		}
		// parse the header
		parseHeader( _header );
		_data = _bytes.subarray( _data_start ); // the data without header
		if ( headerObject.encoding.substring( 0, 2 ) === 'gz' ) {
			// we need to decompress the datastream
			// here we start the unzipping and get a typed Uint8Array back
			_data = fflate.gunzipSync( new Uint8Array( _data ) );
		} else if ( headerObject.encoding === 'ascii' || headerObject.encoding === 'text' || headerObject.encoding === 'txt' || headerObject.encoding === 'hex' ) {
			_data = parseDataAsText( _data );
		} else if ( headerObject.encoding === 'raw' ) {
			//we need to copy the array to create a new array buffer, else we retrieve the original arraybuffer with the header
			const _copy = new Uint8Array( _data.length );
			for ( let i = 0; i < _data.length; i ++ ) {
				_copy[ i ] = _data[ i ];
			}
			_data = _copy;
		}
		// .. let's use the underlying array buffer
		_data = _data.buffer;
		const volume = new Volume();
		volume.header = headerObject;
		volume.segmentation = this.segmentation;
		//
		// parse the (unzipped) data to a datastream of the correct type
		//
		volume.data = new headerObject.__array( _data );
		// get the min and max intensities
		const min_max = volume.computeMinMax();
		const min = min_max[ 0 ];
		const max = min_max[ 1 ];
		// attach the scalar range to the volume
		volume.windowLow = min;
		volume.windowHigh = max;
		// get the image dimensions
		volume.dimensions = [ headerObject.sizes[ 0 ], headerObject.sizes[ 1 ], headerObject.sizes[ 2 ] ];
		volume.xLength = volume.dimensions[ 0 ];
		volume.yLength = volume.dimensions[ 1 ];
		volume.zLength = volume.dimensions[ 2 ];
		// Identify axis order in the space-directions matrix from the header if possible.
		if ( headerObject.vectors ) {
			const xIndex = headerObject.vectors.findIndex( vector => vector[ 0 ] !== 0 );
			const yIndex = headerObject.vectors.findIndex( vector => vector[ 1 ] !== 0 );
			const zIndex = headerObject.vectors.findIndex( vector => vector[ 2 ] !== 0 );
			const axisOrder = [];
			if ( xIndex !== yIndex && xIndex !== zIndex && yIndex !== zIndex ) {
				axisOrder[ xIndex ] = 'x';
				axisOrder[ yIndex ] = 'y';
				axisOrder[ zIndex ] = 'z';
			} else {
				axisOrder[ 0 ] = 'x';
				axisOrder[ 1 ] = 'y';
				axisOrder[ 2 ] = 'z';
			}
			volume.axisOrder = axisOrder;
		} else {
			volume.axisOrder = [ 'x', 'y', 'z' ];
		}
		// spacing
		const spacingX = new Vector3().fromArray( headerObject.vectors[ 0 ] ).length();
		const spacingY = new Vector3().fromArray( headerObject.vectors[ 1 ] ).length();
		const spacingZ = new Vector3().fromArray( headerObject.vectors[ 2 ] ).length();
		volume.spacing = [ spacingX, spacingY, spacingZ ];
		// Create IJKtoRAS matrix
		volume.matrix = new Matrix4();
		const transitionMatrix = new Matrix4();
		if ( headerObject.space === 'left-posterior-superior' ) {
			transitionMatrix.set(
				- 1, 0, 0, 0,
				0, - 1, 0, 0,
				0, 0, 1, 0,
				0, 0, 0, 1
			);
		} else if ( headerObject.space === 'left-anterior-superior' ) {
			transitionMatrix.set(
				1, 0, 0, 0,
				0, 1, 0, 0,
				0, 0, - 1, 0,
				0, 0, 0, 1
			);
		}
		if ( ! headerObject.vectors ) {
			volume.matrix.set(
				1, 0, 0, 0,
				0, 1, 0, 0,
				0, 0, 1, 0,
				0, 0, 0, 1 );
		} else {
			const v = headerObject.vectors;
			const ijk_to_transition = new Matrix4().set(
				v[ 0 ][ 0 ], v[ 1 ][ 0 ], v[ 2 ][ 0 ], 0,
				v[ 0 ][ 1 ], v[ 1 ][ 1 ], v[ 2 ][ 1 ], 0,
				v[ 0 ][ 2 ], v[ 1 ][ 2 ], v[ 2 ][ 2 ], 0,
				0, 0, 0, 1
			);
			const transition_to_ras = new Matrix4().multiplyMatrices( ijk_to_transition, transitionMatrix );
			volume.matrix = transition_to_ras;
		}
		volume.inverseMatrix = new Matrix4();
		volume.inverseMatrix.copy( volume.matrix ).invert();
		volume.RASDimensions = [
			Math.floor( volume.xLength * spacingX ),
			Math.floor( volume.yLength * spacingY ),
			Math.floor( volume.zLength * spacingZ )
		];
		// .. and set the default threshold
		// only if the threshold was not already set
		if ( volume.lowerThreshold === - Infinity ) {
			volume.lowerThreshold = min;
		}
		if ( volume.upperThreshold === Infinity ) {
			volume.upperThreshold = max;
		}
		return volume;
	}
	parseChars( array, start, end ) {
		// without borders, use the whole array
		if ( start === undefined ) {
			start = 0;
		}
		if ( end === undefined ) {
			end = array.length;
		}
		let output = '';
		// create and append the chars
		let i = 0;
		for ( i = start; i < end; ++ i ) {
			output += String.fromCharCode( array[ i ] );
		}
		return output;
	}
}
const _fieldFunctions = {
	type: function ( data ) {
		switch ( data ) {
			case 'uchar':
			case 'unsigned char':
			case 'uint8':
			case 'uint8_t':
				this.__array = Uint8Array;
				break;
			case 'signed char':
			case 'int8':
			case 'int8_t':
				this.__array = Int8Array;
				break;
			case 'short':
			case 'short int':
			case 'signed short':
			case 'signed short int':
			case 'int16':
			case 'int16_t':
				this.__array = Int16Array;
				break;
			case 'ushort':
			case 'unsigned short':
			case 'unsigned short int':
			case 'uint16':
			case 'uint16_t':
				this.__array = Uint16Array;
				break;
			case 'int':
			case 'signed int':
			case 'int32':
			case 'int32_t':
				this.__array = Int32Array;
				break;
			case 'uint':
			case 'unsigned int':
			case 'uint32':
			case 'uint32_t':
				this.__array = Uint32Array;
				break;
			case 'float':
				this.__array = Float32Array;
				break;
			case 'double':
				this.__array = Float64Array;
				break;
			default:
				throw new Error( 'Unsupported NRRD data type: ' + data );
		}
		return this.type = data;
	},
	endian: function ( data ) {
		return this.endian = data;
	},
	encoding: function ( data ) {
		return this.encoding = data;
	},
	dimension: function ( data ) {
		return this.dim = parseInt( data, 10 );
	},
	sizes: function ( data ) {
		let i;
		return this.sizes = ( function () {
			const _ref = data.split( /\s+/ );
			const _results = [];
			for ( let _i = 0, _len = _ref.length; _i < _len; _i ++ ) {
				i = _ref[ _i ];
				_results.push( parseInt( i, 10 ) );
			}
			return _results;
		} )();
	},
	space: function ( data ) {
		return this.space = data;
	},
	'space origin': function ( data ) {
		return this.space_origin = data.split( '(' )[ 1 ].split( ')' )[ 0 ].split( ',' );
	},
	'space directions': function ( data ) {
		let f, v;
		const parts = data.match( /\(.*?\)/g );
		return this.vectors = ( function () {
			const _results = [];
			for ( let _i = 0, _len = parts.length; _i < _len; _i ++ ) {
				v = parts[ _i ];
				_results.push( ( function () {
					const _ref = v.slice( 1, - 1 ).split( /,/ );
					const _results2 = [];
					for ( let _j = 0, _len2 = _ref.length; _j < _len2; _j ++ ) {
						f = _ref[ _j ];
						_results2.push( parseFloat( f ) );
					}
					return _results2;
				} )() );
			}
			return _results;
		} )();
	},
	spacings: function ( data ) {
		let f;
		const parts = data.split( /\s+/ );
		return this.spacings = ( function () {
			const _results = [];
			for ( let _i = 0, _len = parts.length; _i < _len; _i ++ ) {
				f = parts[ _i ];
				_results.push( parseFloat( f ) );
			}
			return _results;
		} )();
	}
};
export { NRRDLoader };