File: //var/www/aspa/three/addons/loaders/FBXLoader.js
import {
	AmbientLight,
	AnimationClip,
	Bone,
	BufferGeometry,
	ClampToEdgeWrapping,
	Color,
	DirectionalLight,
	EquirectangularReflectionMapping,
	Euler,
	FileLoader,
	Float32BufferAttribute,
	Group,
	Line,
	LineBasicMaterial,
	Loader,
	LoaderUtils,
	MathUtils,
	Matrix3,
	Matrix4,
	Mesh,
	MeshLambertMaterial,
	MeshPhongMaterial,
	NumberKeyframeTrack,
	Object3D,
	OrthographicCamera,
	PerspectiveCamera,
	PointLight,
	PropertyBinding,
	Quaternion,
	QuaternionKeyframeTrack,
	RepeatWrapping,
	Skeleton,
	SkinnedMesh,
	SpotLight,
	Texture,
	TextureLoader,
	Uint16BufferAttribute,
	Vector2,
	Vector3,
	Vector4,
	VectorKeyframeTrack,
	SRGBColorSpace,
	ShapeUtils
} from 'three';
import * as fflate from '../libs/fflate.module.js';
import { NURBSCurve } from '../curves/NURBSCurve.js';
/**
 * Loader loads FBX file and generates Group representing FBX scene.
 * Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format
 * Versions lower than this may load but will probably have errors
 *
 * Needs Support:
 *  Morph normals / blend shape normals
 *
 * FBX format references:
 * 	https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference)
 *
 * Binary format specification:
 *	https://code.blender.org/2013/08/fbx-binary-file-format-specification/
 */
let fbxTree;
let connections;
let sceneGraph;
class FBXLoader extends Loader {
	constructor( manager ) {
		super( manager );
	}
	load( url, onLoad, onProgress, onError ) {
		const scope = this;
		const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
		const loader = new FileLoader( this.manager );
		loader.setPath( scope.path );
		loader.setResponseType( 'arraybuffer' );
		loader.setRequestHeader( scope.requestHeader );
		loader.setWithCredentials( scope.withCredentials );
		loader.load( url, function ( buffer ) {
			try {
				onLoad( scope.parse( buffer, path ) );
			} catch ( e ) {
				if ( onError ) {
					onError( e );
				} else {
					console.error( e );
				}
				scope.manager.itemError( url );
			}
		}, onProgress, onError );
	}
	parse( FBXBuffer, path ) {
		if ( isFbxFormatBinary( FBXBuffer ) ) {
			fbxTree = new BinaryParser().parse( FBXBuffer );
		} else {
			const FBXText = convertArrayBufferToString( FBXBuffer );
			if ( ! isFbxFormatASCII( FBXText ) ) {
				throw new Error( 'THREE.FBXLoader: Unknown format.' );
			}
			if ( getFbxVersion( FBXText ) < 7000 ) {
				throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) );
			}
			fbxTree = new TextParser().parse( FBXText );
		}
		// console.log( fbxTree );
		const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
		return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree );
	}
}
// Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group
class FBXTreeParser {
	constructor( textureLoader, manager ) {
		this.textureLoader = textureLoader;
		this.manager = manager;
	}
	parse() {
		connections = this.parseConnections();
		const images = this.parseImages();
		const textures = this.parseTextures( images );
		const materials = this.parseMaterials( textures );
		const deformers = this.parseDeformers();
		const geometryMap = new GeometryParser().parse( deformers );
		this.parseScene( deformers, geometryMap, materials );
		return sceneGraph;
	}
	// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
	// and details the connection type
	parseConnections() {
		const connectionMap = new Map();
		if ( 'Connections' in fbxTree ) {
			const rawConnections = fbxTree.Connections.connections;
			rawConnections.forEach( function ( rawConnection ) {
				const fromID = rawConnection[ 0 ];
				const toID = rawConnection[ 1 ];
				const relationship = rawConnection[ 2 ];
				if ( ! connectionMap.has( fromID ) ) {
					connectionMap.set( fromID, {
						parents: [],
						children: []
					} );
				}
				const parentRelationship = { ID: toID, relationship: relationship };
				connectionMap.get( fromID ).parents.push( parentRelationship );
				if ( ! connectionMap.has( toID ) ) {
					connectionMap.set( toID, {
						parents: [],
						children: []
					} );
				}
				const childRelationship = { ID: fromID, relationship: relationship };
				connectionMap.get( toID ).children.push( childRelationship );
			} );
		}
		return connectionMap;
	}
	// Parse FBXTree.Objects.Video for embedded image data
	// These images are connected to textures in FBXTree.Objects.Textures
	// via FBXTree.Connections.
	parseImages() {
		const images = {};
		const blobs = {};
		if ( 'Video' in fbxTree.Objects ) {
			const videoNodes = fbxTree.Objects.Video;
			for ( const nodeID in videoNodes ) {
				const videoNode = videoNodes[ nodeID ];
				const id = parseInt( nodeID );
				images[ id ] = videoNode.RelativeFilename || videoNode.Filename;
				// raw image data is in videoNode.Content
				if ( 'Content' in videoNode ) {
					const arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 );
					const base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' );
					if ( arrayBufferContent || base64Content ) {
						const image = this.parseImage( videoNodes[ nodeID ] );
						blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image;
					}
				}
			}
		}
		for ( const id in images ) {
			const filename = images[ id ];
			if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ];
			else images[ id ] = images[ id ].split( '\\' ).pop();
		}
		return images;
	}
	// Parse embedded image data in FBXTree.Video.Content
	parseImage( videoNode ) {
		const content = videoNode.Content;
		const fileName = videoNode.RelativeFilename || videoNode.Filename;
		const extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase();
		let type;
		switch ( extension ) {
			case 'bmp':
				type = 'image/bmp';
				break;
			case 'jpg':
			case 'jpeg':
				type = 'image/jpeg';
				break;
			case 'png':
				type = 'image/png';
				break;
			case 'tif':
				type = 'image/tiff';
				break;
			case 'tga':
				if ( this.manager.getHandler( '.tga' ) === null ) {
					console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName );
				}
				type = 'image/tga';
				break;
			default:
				console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' );
				return;
		}
		if ( typeof content === 'string' ) { // ASCII format
			return 'data:' + type + ';base64,' + content;
		} else { // Binary Format
			const array = new Uint8Array( content );
			return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) );
		}
	}
	// Parse nodes in FBXTree.Objects.Texture
	// These contain details such as UV scaling, cropping, rotation etc and are connected
	// to images in FBXTree.Objects.Video
	parseTextures( images ) {
		const textureMap = new Map();
		if ( 'Texture' in fbxTree.Objects ) {
			const textureNodes = fbxTree.Objects.Texture;
			for ( const nodeID in textureNodes ) {
				const texture = this.parseTexture( textureNodes[ nodeID ], images );
				textureMap.set( parseInt( nodeID ), texture );
			}
		}
		return textureMap;
	}
	// Parse individual node in FBXTree.Objects.Texture
	parseTexture( textureNode, images ) {
		const texture = this.loadTexture( textureNode, images );
		texture.ID = textureNode.id;
		texture.name = textureNode.attrName;
		const wrapModeU = textureNode.WrapModeU;
		const wrapModeV = textureNode.WrapModeV;
		const valueU = wrapModeU !== undefined ? wrapModeU.value : 0;
		const valueV = wrapModeV !== undefined ? wrapModeV.value : 0;
		// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a
		// 0: repeat(default), 1: clamp
		texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping;
		texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping;
		if ( 'Scaling' in textureNode ) {
			const values = textureNode.Scaling.value;
			texture.repeat.x = values[ 0 ];
			texture.repeat.y = values[ 1 ];
		}
		if ( 'Translation' in textureNode ) {
			const values = textureNode.Translation.value;
			texture.offset.x = values[ 0 ];
			texture.offset.y = values[ 1 ];
		}
		return texture;
	}
	// load a texture specified as a blob or data URI, or via an external URL using TextureLoader
	loadTexture( textureNode, images ) {
		let fileName;
		const currentPath = this.textureLoader.path;
		const children = connections.get( textureNode.id ).children;
		if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) {
			fileName = images[ children[ 0 ].ID ];
			if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) {
				this.textureLoader.setPath( undefined );
			}
		}
		let texture;
		const extension = textureNode.FileName.slice( - 3 ).toLowerCase();
		if ( extension === 'tga' ) {
			const loader = this.manager.getHandler( '.tga' );
			if ( loader === null ) {
				console.warn( 'FBXLoader: TGA loader not found, creating placeholder texture for', textureNode.RelativeFilename );
				texture = new Texture();
			} else {
				loader.setPath( this.textureLoader.path );
				texture = loader.load( fileName );
			}
		} else if ( extension === 'dds' ) {
			const loader = this.manager.getHandler( '.dds' );
			if ( loader === null ) {
				console.warn( 'FBXLoader: DDS loader not found, creating placeholder texture for', textureNode.RelativeFilename );
				texture = new Texture();
			} else {
				loader.setPath( this.textureLoader.path );
				texture = loader.load( fileName );
			}
		} else if ( extension === 'psd' ) {
			console.warn( 'FBXLoader: PSD textures are not supported, creating placeholder texture for', textureNode.RelativeFilename );
			texture = new Texture();
		} else {
			texture = this.textureLoader.load( fileName );
		}
		this.textureLoader.setPath( currentPath );
		return texture;
	}
	// Parse nodes in FBXTree.Objects.Material
	parseMaterials( textureMap ) {
		const materialMap = new Map();
		if ( 'Material' in fbxTree.Objects ) {
			const materialNodes = fbxTree.Objects.Material;
			for ( const nodeID in materialNodes ) {
				const material = this.parseMaterial( materialNodes[ nodeID ], textureMap );
				if ( material !== null ) materialMap.set( parseInt( nodeID ), material );
			}
		}
		return materialMap;
	}
	// Parse single node in FBXTree.Objects.Material
	// Materials are connected to texture maps in FBXTree.Objects.Textures
	// FBX format currently only supports Lambert and Phong shading models
	parseMaterial( materialNode, textureMap ) {
		const ID = materialNode.id;
		const name = materialNode.attrName;
		let type = materialNode.ShadingModel;
		// Case where FBX wraps shading model in property object.
		if ( typeof type === 'object' ) {
			type = type.value;
		}
		// Ignore unused materials which don't have any connections.
		if ( ! connections.has( ID ) ) return null;
		const parameters = this.parseParameters( materialNode, textureMap, ID );
		let material;
		switch ( type.toLowerCase() ) {
			case 'phong':
				material = new MeshPhongMaterial();
				break;
			case 'lambert':
				material = new MeshLambertMaterial();
				break;
			default:
				console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type );
				material = new MeshPhongMaterial();
				break;
		}
		material.setValues( parameters );
		material.name = name;
		return material;
	}
	// Parse FBX material and return parameters suitable for a three.js material
	// Also parse the texture map and return any textures associated with the material
	parseParameters( materialNode, textureMap, ID ) {
		const parameters = {};
		if ( materialNode.BumpFactor ) {
			parameters.bumpScale = materialNode.BumpFactor.value;
		}
		if ( materialNode.Diffuse ) {
			parameters.color = new Color().fromArray( materialNode.Diffuse.value ).convertSRGBToLinear();
		} else if ( materialNode.DiffuseColor && ( materialNode.DiffuseColor.type === 'Color' || materialNode.DiffuseColor.type === 'ColorRGB' ) ) {
			// The blender exporter exports diffuse here instead of in materialNode.Diffuse
			parameters.color = new Color().fromArray( materialNode.DiffuseColor.value ).convertSRGBToLinear();
		}
		if ( materialNode.DisplacementFactor ) {
			parameters.displacementScale = materialNode.DisplacementFactor.value;
		}
		if ( materialNode.Emissive ) {
			parameters.emissive = new Color().fromArray( materialNode.Emissive.value ).convertSRGBToLinear();
		} else if ( materialNode.EmissiveColor && ( materialNode.EmissiveColor.type === 'Color' || materialNode.EmissiveColor.type === 'ColorRGB' ) ) {
			// The blender exporter exports emissive color here instead of in materialNode.Emissive
			parameters.emissive = new Color().fromArray( materialNode.EmissiveColor.value ).convertSRGBToLinear();
		}
		if ( materialNode.EmissiveFactor ) {
			parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value );
		}
		if ( materialNode.Opacity ) {
			parameters.opacity = parseFloat( materialNode.Opacity.value );
		}
		if ( parameters.opacity < 1.0 ) {
			parameters.transparent = true;
		}
		if ( materialNode.ReflectionFactor ) {
			parameters.reflectivity = materialNode.ReflectionFactor.value;
		}
		if ( materialNode.Shininess ) {
			parameters.shininess = materialNode.Shininess.value;
		}
		if ( materialNode.Specular ) {
			parameters.specular = new Color().fromArray( materialNode.Specular.value ).convertSRGBToLinear();
		} else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) {
			// The blender exporter exports specular color here instead of in materialNode.Specular
			parameters.specular = new Color().fromArray( materialNode.SpecularColor.value ).convertSRGBToLinear();
		}
		const scope = this;
		connections.get( ID ).children.forEach( function ( child ) {
			const type = child.relationship;
			switch ( type ) {
				case 'Bump':
					parameters.bumpMap = scope.getTexture( textureMap, child.ID );
					break;
				case 'Maya|TEX_ao_map':
					parameters.aoMap = scope.getTexture( textureMap, child.ID );
					break;
				case 'DiffuseColor':
				case 'Maya|TEX_color_map':
					parameters.map = scope.getTexture( textureMap, child.ID );
					if ( parameters.map !== undefined ) {
						parameters.map.colorSpace = SRGBColorSpace;
					}
					break;
				case 'DisplacementColor':
					parameters.displacementMap = scope.getTexture( textureMap, child.ID );
					break;
				case 'EmissiveColor':
					parameters.emissiveMap = scope.getTexture( textureMap, child.ID );
					if ( parameters.emissiveMap !== undefined ) {
						parameters.emissiveMap.colorSpace = SRGBColorSpace;
					}
					break;
				case 'NormalMap':
				case 'Maya|TEX_normal_map':
					parameters.normalMap = scope.getTexture( textureMap, child.ID );
					break;
				case 'ReflectionColor':
					parameters.envMap = scope.getTexture( textureMap, child.ID );
					if ( parameters.envMap !== undefined ) {
						parameters.envMap.mapping = EquirectangularReflectionMapping;
						parameters.envMap.colorSpace = SRGBColorSpace;
					}
					break;
				case 'SpecularColor':
					parameters.specularMap = scope.getTexture( textureMap, child.ID );
					if ( parameters.specularMap !== undefined ) {
						parameters.specularMap.colorSpace = SRGBColorSpace;
					}
					break;
				case 'TransparentColor':
				case 'TransparencyFactor':
					parameters.alphaMap = scope.getTexture( textureMap, child.ID );
					parameters.transparent = true;
					break;
				case 'AmbientColor':
				case 'ShininessExponent': // AKA glossiness map
				case 'SpecularFactor': // AKA specularLevel
				case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor
				default:
					console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type );
					break;
			}
		} );
		return parameters;
	}
	// get a texture from the textureMap for use by a material.
	getTexture( textureMap, id ) {
		// if the texture is a layered texture, just use the first layer and issue a warning
		if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) {
			console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' );
			id = connections.get( id ).children[ 0 ].ID;
		}
		return textureMap.get( id );
	}
	// Parse nodes in FBXTree.Objects.Deformer
	// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
	// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
	parseDeformers() {
		const skeletons = {};
		const morphTargets = {};
		if ( 'Deformer' in fbxTree.Objects ) {
			const DeformerNodes = fbxTree.Objects.Deformer;
			for ( const nodeID in DeformerNodes ) {
				const deformerNode = DeformerNodes[ nodeID ];
				const relationships = connections.get( parseInt( nodeID ) );
				if ( deformerNode.attrType === 'Skin' ) {
					const skeleton = this.parseSkeleton( relationships, DeformerNodes );
					skeleton.ID = nodeID;
					if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' );
					skeleton.geometryID = relationships.parents[ 0 ].ID;
					skeletons[ nodeID ] = skeleton;
				} else if ( deformerNode.attrType === 'BlendShape' ) {
					const morphTarget = {
						id: nodeID,
					};
					morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes );
					morphTarget.id = nodeID;
					if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' );
					morphTargets[ nodeID ] = morphTarget;
				}
			}
		}
		return {
			skeletons: skeletons,
			morphTargets: morphTargets,
		};
	}
	// Parse single nodes in FBXTree.Objects.Deformer
	// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster'
	// Each skin node represents a skeleton and each cluster node represents a bone
	parseSkeleton( relationships, deformerNodes ) {
		const rawBones = [];
		relationships.children.forEach( function ( child ) {
			const boneNode = deformerNodes[ child.ID ];
			if ( boneNode.attrType !== 'Cluster' ) return;
			const rawBone = {
				ID: child.ID,
				indices: [],
				weights: [],
				transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ),
				// transform: new Matrix4().fromArray( boneNode.Transform.a ),
				// linkMode: boneNode.Mode,
			};
			if ( 'Indexes' in boneNode ) {
				rawBone.indices = boneNode.Indexes.a;
				rawBone.weights = boneNode.Weights.a;
			}
			rawBones.push( rawBone );
		} );
		return {
			rawBones: rawBones,
			bones: []
		};
	}
	// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel"
	parseMorphTargets( relationships, deformerNodes ) {
		const rawMorphTargets = [];
		for ( let i = 0; i < relationships.children.length; i ++ ) {
			const child = relationships.children[ i ];
			const morphTargetNode = deformerNodes[ child.ID ];
			const rawMorphTarget = {
				name: morphTargetNode.attrName,
				initialWeight: morphTargetNode.DeformPercent,
				id: morphTargetNode.id,
				fullWeights: morphTargetNode.FullWeights.a
			};
			if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return;
			rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) {
				return child.relationship === undefined;
			} )[ 0 ].ID;
			rawMorphTargets.push( rawMorphTarget );
		}
		return rawMorphTargets;
	}
	// create the main Group() to be returned by the loader
	parseScene( deformers, geometryMap, materialMap ) {
		sceneGraph = new Group();
		const modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap );
		const modelNodes = fbxTree.Objects.Model;
		const scope = this;
		modelMap.forEach( function ( model ) {
			const modelNode = modelNodes[ model.ID ];
			scope.setLookAtProperties( model, modelNode );
			const parentConnections = connections.get( model.ID ).parents;
			parentConnections.forEach( function ( connection ) {
				const parent = modelMap.get( connection.ID );
				if ( parent !== undefined ) parent.add( model );
			} );
			if ( model.parent === null ) {
				sceneGraph.add( model );
			}
		} );
		this.bindSkeleton( deformers.skeletons, geometryMap, modelMap );
		this.addGlobalSceneSettings();
		sceneGraph.traverse( function ( node ) {
			if ( node.userData.transformData ) {
				if ( node.parent ) {
					node.userData.transformData.parentMatrix = node.parent.matrix;
					node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld;
				}
				const transform = generateTransform( node.userData.transformData );
				node.applyMatrix4( transform );
				node.updateWorldMatrix();
			}
		} );
		const animations = new AnimationParser().parse();
		// if all the models where already combined in a single group, just return that
		if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) {
			sceneGraph.children[ 0 ].animations = animations;
			sceneGraph = sceneGraph.children[ 0 ];
		}
		sceneGraph.animations = animations;
	}
	// parse nodes in FBXTree.Objects.Model
	parseModels( skeletons, geometryMap, materialMap ) {
		const modelMap = new Map();
		const modelNodes = fbxTree.Objects.Model;
		for ( const nodeID in modelNodes ) {
			const id = parseInt( nodeID );
			const node = modelNodes[ nodeID ];
			const relationships = connections.get( id );
			let model = this.buildSkeleton( relationships, skeletons, id, node.attrName );
			if ( ! model ) {
				switch ( node.attrType ) {
					case 'Camera':
						model = this.createCamera( relationships );
						break;
					case 'Light':
						model = this.createLight( relationships );
						break;
					case 'Mesh':
						model = this.createMesh( relationships, geometryMap, materialMap );
						break;
					case 'NurbsCurve':
						model = this.createCurve( relationships, geometryMap );
						break;
					case 'LimbNode':
					case 'Root':
						model = new Bone();
						break;
					case 'Null':
					default:
						model = new Group();
						break;
				}
				model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : '';
				model.userData.originalName = node.attrName;
				model.ID = id;
			}
			this.getTransformData( model, node );
			modelMap.set( id, model );
		}
		return modelMap;
	}
	buildSkeleton( relationships, skeletons, id, name ) {
		let bone = null;
		relationships.parents.forEach( function ( parent ) {
			for ( const ID in skeletons ) {
				const skeleton = skeletons[ ID ];
				skeleton.rawBones.forEach( function ( rawBone, i ) {
					if ( rawBone.ID === parent.ID ) {
						const subBone = bone;
						bone = new Bone();
						bone.matrixWorld.copy( rawBone.transformLink );
						// set name and id here - otherwise in cases where "subBone" is created it will not have a name / id
						bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : '';
						bone.userData.originalName = name;
						bone.ID = id;
						skeleton.bones[ i ] = bone;
						// In cases where a bone is shared between multiple meshes
						// duplicate the bone here and and it as a child of the first bone
						if ( subBone !== null ) {
							bone.add( subBone );
						}
					}
				} );
			}
		} );
		return bone;
	}
	// create a PerspectiveCamera or OrthographicCamera
	createCamera( relationships ) {
		let model;
		let cameraAttribute;
		relationships.children.forEach( function ( child ) {
			const attr = fbxTree.Objects.NodeAttribute[ child.ID ];
			if ( attr !== undefined ) {
				cameraAttribute = attr;
			}
		} );
		if ( cameraAttribute === undefined ) {
			model = new Object3D();
		} else {
			let type = 0;
			if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) {
				type = 1;
			}
			let nearClippingPlane = 1;
			if ( cameraAttribute.NearPlane !== undefined ) {
				nearClippingPlane = cameraAttribute.NearPlane.value / 1000;
			}
			let farClippingPlane = 1000;
			if ( cameraAttribute.FarPlane !== undefined ) {
				farClippingPlane = cameraAttribute.FarPlane.value / 1000;
			}
			let width = window.innerWidth;
			let height = window.innerHeight;
			if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) {
				width = cameraAttribute.AspectWidth.value;
				height = cameraAttribute.AspectHeight.value;
			}
			const aspect = width / height;
			let fov = 45;
			if ( cameraAttribute.FieldOfView !== undefined ) {
				fov = cameraAttribute.FieldOfView.value;
			}
			const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null;
			switch ( type ) {
				case 0: // Perspective
					model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane );
					if ( focalLength !== null ) model.setFocalLength( focalLength );
					break;
				case 1: // Orthographic
					model = new OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane );
					break;
				default:
					console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' );
					model = new Object3D();
					break;
			}
		}
		return model;
	}
	// Create a DirectionalLight, PointLight or SpotLight
	createLight( relationships ) {
		let model;
		let lightAttribute;
		relationships.children.forEach( function ( child ) {
			const attr = fbxTree.Objects.NodeAttribute[ child.ID ];
			if ( attr !== undefined ) {
				lightAttribute = attr;
			}
		} );
		if ( lightAttribute === undefined ) {
			model = new Object3D();
		} else {
			let type;
			// LightType can be undefined for Point lights
			if ( lightAttribute.LightType === undefined ) {
				type = 0;
			} else {
				type = lightAttribute.LightType.value;
			}
			let color = 0xffffff;
			if ( lightAttribute.Color !== undefined ) {
				color = new Color().fromArray( lightAttribute.Color.value ).convertSRGBToLinear();
			}
			let intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100;
			// light disabled
			if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) {
				intensity = 0;
			}
			let distance = 0;
			if ( lightAttribute.FarAttenuationEnd !== undefined ) {
				if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) {
					distance = 0;
				} else {
					distance = lightAttribute.FarAttenuationEnd.value;
				}
			}
			// TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd?
			const decay = 1;
			switch ( type ) {
				case 0: // Point
					model = new PointLight( color, intensity, distance, decay );
					break;
				case 1: // Directional
					model = new DirectionalLight( color, intensity );
					break;
				case 2: // Spot
					let angle = Math.PI / 3;
					if ( lightAttribute.InnerAngle !== undefined ) {
						angle = MathUtils.degToRad( lightAttribute.InnerAngle.value );
					}
					let penumbra = 0;
					if ( lightAttribute.OuterAngle !== undefined ) {
						// TODO: this is not correct - FBX calculates outer and inner angle in degrees
						// with OuterAngle > InnerAngle && OuterAngle <= Math.PI
						// while three.js uses a penumbra between (0, 1) to attenuate the inner angle
						penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value );
						penumbra = Math.max( penumbra, 1 );
					}
					model = new SpotLight( color, intensity, distance, angle, penumbra, decay );
					break;
				default:
					console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' );
					model = new PointLight( color, intensity );
					break;
			}
			if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) {
				model.castShadow = true;
			}
		}
		return model;
	}
	createMesh( relationships, geometryMap, materialMap ) {
		let model;
		let geometry = null;
		let material = null;
		const materials = [];
		// get geometry and materials(s) from connections
		relationships.children.forEach( function ( child ) {
			if ( geometryMap.has( child.ID ) ) {
				geometry = geometryMap.get( child.ID );
			}
			if ( materialMap.has( child.ID ) ) {
				materials.push( materialMap.get( child.ID ) );
			}
		} );
		if ( materials.length > 1 ) {
			material = materials;
		} else if ( materials.length > 0 ) {
			material = materials[ 0 ];
		} else {
			material = new MeshPhongMaterial( {
				name: Loader.DEFAULT_MATERIAL_NAME,
				color: 0xcccccc
			} );
			materials.push( material );
		}
		if ( 'color' in geometry.attributes ) {
			materials.forEach( function ( material ) {
				material.vertexColors = true;
			} );
		}
		if ( geometry.FBX_Deformer ) {
			model = new SkinnedMesh( geometry, material );
			model.normalizeSkinWeights();
		} else {
			model = new Mesh( geometry, material );
		}
		return model;
	}
	createCurve( relationships, geometryMap ) {
		const geometry = relationships.children.reduce( function ( geo, child ) {
			if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID );
			return geo;
		}, null );
		// FBX does not list materials for Nurbs lines, so we'll just put our own in here.
		const material = new LineBasicMaterial( {
			name: Loader.DEFAULT_MATERIAL_NAME,
			color: 0x3300ff,
			linewidth: 1
		} );
		return new Line( geometry, material );
	}
	// parse the model node for transform data
	getTransformData( model, modelNode ) {
		const transformData = {};
		if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
		if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
		else transformData.eulerOrder = 'ZYX';
		if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value;
		if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value;
		if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value;
		if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value;
		if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value;
		if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value;
		if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value;
		if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value;
		if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value;
		model.userData.transformData = transformData;
	}
	setLookAtProperties( model, modelNode ) {
		if ( 'LookAtProperty' in modelNode ) {
			const children = connections.get( model.ID ).children;
			children.forEach( function ( child ) {
				if ( child.relationship === 'LookAtProperty' ) {
					const lookAtTarget = fbxTree.Objects.Model[ child.ID ];
					if ( 'Lcl_Translation' in lookAtTarget ) {
						const pos = lookAtTarget.Lcl_Translation.value;
						// DirectionalLight, SpotLight
						if ( model.target !== undefined ) {
							model.target.position.fromArray( pos );
							sceneGraph.add( model.target );
						} else { // Cameras and other Object3Ds
							model.lookAt( new Vector3().fromArray( pos ) );
						}
					}
				}
			} );
		}
	}
	bindSkeleton( skeletons, geometryMap, modelMap ) {
		const bindMatrices = this.parsePoseNodes();
		for ( const ID in skeletons ) {
			const skeleton = skeletons[ ID ];
			const parents = connections.get( parseInt( skeleton.ID ) ).parents;
			parents.forEach( function ( parent ) {
				if ( geometryMap.has( parent.ID ) ) {
					const geoID = parent.ID;
					const geoRelationships = connections.get( geoID );
					geoRelationships.parents.forEach( function ( geoConnParent ) {
						if ( modelMap.has( geoConnParent.ID ) ) {
							const model = modelMap.get( geoConnParent.ID );
							model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] );
						}
					} );
				}
			} );
		}
	}
	parsePoseNodes() {
		const bindMatrices = {};
		if ( 'Pose' in fbxTree.Objects ) {
			const BindPoseNode = fbxTree.Objects.Pose;
			for ( const nodeID in BindPoseNode ) {
				if ( BindPoseNode[ nodeID ].attrType === 'BindPose' && BindPoseNode[ nodeID ].NbPoseNodes > 0 ) {
					const poseNodes = BindPoseNode[ nodeID ].PoseNode;
					if ( Array.isArray( poseNodes ) ) {
						poseNodes.forEach( function ( poseNode ) {
							bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a );
						} );
					} else {
						bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a );
					}
				}
			}
		}
		return bindMatrices;
	}
	addGlobalSceneSettings() {
		if ( 'GlobalSettings' in fbxTree ) {
			if ( 'AmbientColor' in fbxTree.GlobalSettings ) {
				// Parse ambient color - if it's not set to black (default), create an ambient light
				const ambientColor = fbxTree.GlobalSettings.AmbientColor.value;
				const r = ambientColor[ 0 ];
				const g = ambientColor[ 1 ];
				const b = ambientColor[ 2 ];
				if ( r !== 0 || g !== 0 || b !== 0 ) {
					const color = new Color( r, g, b ).convertSRGBToLinear();
					sceneGraph.add( new AmbientLight( color, 1 ) );
				}
			}
			if ( 'UnitScaleFactor' in fbxTree.GlobalSettings ) {
				sceneGraph.userData.unitScaleFactor = fbxTree.GlobalSettings.UnitScaleFactor.value;
			}
		}
	}
}
// parse Geometry data from FBXTree and return map of BufferGeometries
class GeometryParser {
	constructor() {
		this.negativeMaterialIndices = false;
	}
	// Parse nodes in FBXTree.Objects.Geometry
	parse( deformers ) {
		const geometryMap = new Map();
		if ( 'Geometry' in fbxTree.Objects ) {
			const geoNodes = fbxTree.Objects.Geometry;
			for ( const nodeID in geoNodes ) {
				const relationships = connections.get( parseInt( nodeID ) );
				const geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers );
				geometryMap.set( parseInt( nodeID ), geo );
			}
		}
		// report warnings
		if ( this.negativeMaterialIndices === true ) {
			console.warn( 'THREE.FBXLoader: The FBX file contains invalid (negative) material indices. The asset might not render as expected.' );
		}
		return geometryMap;
	}
	// Parse single node in FBXTree.Objects.Geometry
	parseGeometry( relationships, geoNode, deformers ) {
		switch ( geoNode.attrType ) {
			case 'Mesh':
				return this.parseMeshGeometry( relationships, geoNode, deformers );
				break;
			case 'NurbsCurve':
				return this.parseNurbsGeometry( geoNode );
				break;
		}
	}
	// Parse single node mesh geometry in FBXTree.Objects.Geometry
	parseMeshGeometry( relationships, geoNode, deformers ) {
		const skeletons = deformers.skeletons;
		const morphTargets = [];
		const modelNodes = relationships.parents.map( function ( parent ) {
			return fbxTree.Objects.Model[ parent.ID ];
		} );
		// don't create geometry if it is not associated with any models
		if ( modelNodes.length === 0 ) return;
		const skeleton = relationships.children.reduce( function ( skeleton, child ) {
			if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ];
			return skeleton;
		}, null );
		relationships.children.forEach( function ( child ) {
			if ( deformers.morphTargets[ child.ID ] !== undefined ) {
				morphTargets.push( deformers.morphTargets[ child.ID ] );
			}
		} );
		// Assume one model and get the preRotation from that
		// if there is more than one model associated with the geometry this may cause problems
		const modelNode = modelNodes[ 0 ];
		const transformData = {};
		if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
		if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
		if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value;
		if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value;
		if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value;
		const transform = generateTransform( transformData );
		return this.genGeometry( geoNode, skeleton, morphTargets, transform );
	}
	// Generate a BufferGeometry from a node in FBXTree.Objects.Geometry
	genGeometry( geoNode, skeleton, morphTargets, preTransform ) {
		const geo = new BufferGeometry();
		if ( geoNode.attrName ) geo.name = geoNode.attrName;
		const geoInfo = this.parseGeoNode( geoNode, skeleton );
		const buffers = this.genBuffers( geoInfo );
		const positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 );
		positionAttribute.applyMatrix4( preTransform );
		geo.setAttribute( 'position', positionAttribute );
		if ( buffers.colors.length > 0 ) {
			geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) );
		}
		if ( skeleton ) {
			geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) );
			geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) );
			// used later to bind the skeleton to the model
			geo.FBX_Deformer = skeleton;
		}
		if ( buffers.normal.length > 0 ) {
			const normalMatrix = new Matrix3().getNormalMatrix( preTransform );
			const normalAttribute = new Float32BufferAttribute( buffers.normal, 3 );
			normalAttribute.applyNormalMatrix( normalMatrix );
			geo.setAttribute( 'normal', normalAttribute );
		}
		buffers.uvs.forEach( function ( uvBuffer, i ) {
			const name = i === 0 ? 'uv' : `uv${ i }`;
			geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) );
		} );
		if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
			// Convert the material indices of each vertex into rendering groups on the geometry.
			let prevMaterialIndex = buffers.materialIndex[ 0 ];
			let startIndex = 0;
			buffers.materialIndex.forEach( function ( currentIndex, i ) {
				if ( currentIndex !== prevMaterialIndex ) {
					geo.addGroup( startIndex, i - startIndex, prevMaterialIndex );
					prevMaterialIndex = currentIndex;
					startIndex = i;
				}
			} );
			// the loop above doesn't add the last group, do that here.
			if ( geo.groups.length > 0 ) {
				const lastGroup = geo.groups[ geo.groups.length - 1 ];
				const lastIndex = lastGroup.start + lastGroup.count;
				if ( lastIndex !== buffers.materialIndex.length ) {
					geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex );
				}
			}
			// case where there are multiple materials but the whole geometry is only
			// using one of them
			if ( geo.groups.length === 0 ) {
				geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] );
			}
		}
		this.addMorphTargets( geo, geoNode, morphTargets, preTransform );
		return geo;
	}
	parseGeoNode( geoNode, skeleton ) {
		const geoInfo = {};
		geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : [];
		geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : [];
		if ( geoNode.LayerElementColor ) {
			geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] );
		}
		if ( geoNode.LayerElementMaterial ) {
			geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] );
		}
		if ( geoNode.LayerElementNormal ) {
			geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] );
		}
		if ( geoNode.LayerElementUV ) {
			geoInfo.uv = [];
			let i = 0;
			while ( geoNode.LayerElementUV[ i ] ) {
				if ( geoNode.LayerElementUV[ i ].UV ) {
					geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) );
				}
				i ++;
			}
		}
		geoInfo.weightTable = {};
		if ( skeleton !== null ) {
			geoInfo.skeleton = skeleton;
			skeleton.rawBones.forEach( function ( rawBone, i ) {
				// loop over the bone's vertex indices and weights
				rawBone.indices.forEach( function ( index, j ) {
					if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = [];
					geoInfo.weightTable[ index ].push( {
						id: i,
						weight: rawBone.weights[ j ],
					} );
				} );
			} );
		}
		return geoInfo;
	}
	genBuffers( geoInfo ) {
		const buffers = {
			vertex: [],
			normal: [],
			colors: [],
			uvs: [],
			materialIndex: [],
			vertexWeights: [],
			weightsIndices: [],
		};
		let polygonIndex = 0;
		let faceLength = 0;
		let displayedWeightsWarning = false;
		// these will hold data for a single face
		let facePositionIndexes = [];
		let faceNormals = [];
		let faceColors = [];
		let faceUVs = [];
		let faceWeights = [];
		let faceWeightIndices = [];
		const scope = this;
		geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) {
			let materialIndex;
			let endOfFace = false;
			// Face index and vertex index arrays are combined in a single array
			// A cube with quad faces looks like this:
			// PolygonVertexIndex: *24 {
			//  a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5
			//  }
			// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3
			// to find index of last vertex bit shift the index: ^ - 1
			if ( vertexIndex < 0 ) {
				vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1
				endOfFace = true;
			}
			let weightIndices = [];
			let weights = [];
			facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 );
			if ( geoInfo.color ) {
				const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color );
				faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] );
			}
			if ( geoInfo.skeleton ) {
				if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) {
					geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) {
						weights.push( wt.weight );
						weightIndices.push( wt.id );
					} );
				}
				if ( weights.length > 4 ) {
					if ( ! displayedWeightsWarning ) {
						console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' );
						displayedWeightsWarning = true;
					}
					const wIndex = [ 0, 0, 0, 0 ];
					const Weight = [ 0, 0, 0, 0 ];
					weights.forEach( function ( weight, weightIndex ) {
						let currentWeight = weight;
						let currentIndex = weightIndices[ weightIndex ];
						Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) {
							if ( currentWeight > comparedWeight ) {
								comparedWeightArray[ comparedWeightIndex ] = currentWeight;
								currentWeight = comparedWeight;
								const tmp = wIndex[ comparedWeightIndex ];
								wIndex[ comparedWeightIndex ] = currentIndex;
								currentIndex = tmp;
							}
						} );
					} );
					weightIndices = wIndex;
					weights = Weight;
				}
				// if the weight array is shorter than 4 pad with 0s
				while ( weights.length < 4 ) {
					weights.push( 0 );
					weightIndices.push( 0 );
				}
				for ( let i = 0; i < 4; ++ i ) {
					faceWeights.push( weights[ i ] );
					faceWeightIndices.push( weightIndices[ i ] );
				}
			}
			if ( geoInfo.normal ) {
				const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal );
				faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] );
			}
			if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
				materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ];
				if ( materialIndex < 0 ) {
					scope.negativeMaterialIndices = true;
					materialIndex = 0; // fallback
				}
			}
			if ( geoInfo.uv ) {
				geoInfo.uv.forEach( function ( uv, i ) {
					const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv );
					if ( faceUVs[ i ] === undefined ) {
						faceUVs[ i ] = [];
					}
					faceUVs[ i ].push( data[ 0 ] );
					faceUVs[ i ].push( data[ 1 ] );
				} );
			}
			faceLength ++;
			if ( endOfFace ) {
				scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength );
				polygonIndex ++;
				faceLength = 0;
				// reset arrays for the next face
				facePositionIndexes = [];
				faceNormals = [];
				faceColors = [];
				faceUVs = [];
				faceWeights = [];
				faceWeightIndices = [];
			}
		} );
		return buffers;
	}
	// See https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal
	getNormalNewell( vertices ) {
		const normal = new Vector3( 0.0, 0.0, 0.0 );
		for ( let i = 0; i < vertices.length; i ++ ) {
			const current = vertices[ i ];
			const next = vertices[ ( i + 1 ) % vertices.length ];
			normal.x += ( current.y - next.y ) * ( current.z + next.z );
			normal.y += ( current.z - next.z ) * ( current.x + next.x );
			normal.z += ( current.x - next.x ) * ( current.y + next.y );
		}
		normal.normalize();
		return normal;
	}
	getNormalTangentAndBitangent( vertices ) {
		const normalVector = this.getNormalNewell( vertices );
		// Avoid up being equal or almost equal to normalVector
		const up = Math.abs( normalVector.z ) > 0.5 ? new Vector3( 0.0, 1.0, 0.0 ) : new Vector3( 0.0, 0.0, 1.0 );
		const tangent = up.cross( normalVector ).normalize();
		const bitangent = normalVector.clone().cross( tangent ).normalize();
		return {
			normal: normalVector,
			tangent: tangent,
			bitangent: bitangent
		};
	}
	flattenVertex( vertex, normalTangent, normalBitangent ) {
		return new Vector2(
			vertex.dot( normalTangent ),
			vertex.dot( normalBitangent )
		);
	}
	// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris
	genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) {
		let triangles;
		if ( faceLength > 3 ) {
			// Triangulate n-gon using earcut
			const vertices = [];
			for ( let i = 0; i < facePositionIndexes.length; i += 3 ) {
				vertices.push( new Vector3(
					geoInfo.vertexPositions[ facePositionIndexes[ i ] ],
					geoInfo.vertexPositions[ facePositionIndexes[ i + 1 ] ],
					geoInfo.vertexPositions[ facePositionIndexes[ i + 2 ] ]
				) );
			}
			const { tangent, bitangent } = this.getNormalTangentAndBitangent( vertices );
			const triangulationInput = [];
			for ( const vertex of vertices ) {
				triangulationInput.push( this.flattenVertex( vertex, tangent, bitangent ) );
			}
			triangles = ShapeUtils.triangulateShape( triangulationInput, [] );
		} else {
			// Regular triangle, skip earcut triangulation step
			triangles = [[ 0, 1, 2 ]];
		}
		for ( const [ i0, i1, i2 ] of triangles ) {
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 1 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 2 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 1 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 2 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 1 ] ] );
			buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 2 ] ] );
			if ( geoInfo.skeleton ) {
				buffers.vertexWeights.push( faceWeights[ i0 * 4 ] );
				buffers.vertexWeights.push( faceWeights[ i0 * 4 + 1 ] );
				buffers.vertexWeights.push( faceWeights[ i0 * 4 + 2 ] );
				buffers.vertexWeights.push( faceWeights[ i0 * 4 + 3 ] );
				buffers.vertexWeights.push( faceWeights[ i1 * 4 ] );
				buffers.vertexWeights.push( faceWeights[ i1 * 4 + 1 ] );
				buffers.vertexWeights.push( faceWeights[ i1 * 4 + 2 ] );
				buffers.vertexWeights.push( faceWeights[ i1 * 4 + 3 ] );
				buffers.vertexWeights.push( faceWeights[ i2 * 4 ] );
				buffers.vertexWeights.push( faceWeights[ i2 * 4 + 1 ] );
				buffers.vertexWeights.push( faceWeights[ i2 * 4 + 2 ] );
				buffers.vertexWeights.push( faceWeights[ i2 * 4 + 3 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 1 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 2 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 3 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 1 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 2 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 3 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 1 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 2 ] );
				buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 3 ] );
			}
			if ( geoInfo.color ) {
				buffers.colors.push( faceColors[ i0 * 3 ] );
				buffers.colors.push( faceColors[ i0 * 3 + 1 ] );
				buffers.colors.push( faceColors[ i0 * 3 + 2 ] );
				buffers.colors.push( faceColors[ i1 * 3 ] );
				buffers.colors.push( faceColors[ i1 * 3 + 1 ] );
				buffers.colors.push( faceColors[ i1 * 3 + 2 ] );
				buffers.colors.push( faceColors[ i2 * 3 ] );
				buffers.colors.push( faceColors[ i2 * 3 + 1 ] );
				buffers.colors.push( faceColors[ i2 * 3 + 2 ] );
			}
			if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
				buffers.materialIndex.push( materialIndex );
				buffers.materialIndex.push( materialIndex );
				buffers.materialIndex.push( materialIndex );
			}
			if ( geoInfo.normal ) {
				buffers.normal.push( faceNormals[ i0 * 3 ] );
				buffers.normal.push( faceNormals[ i0 * 3 + 1 ] );
				buffers.normal.push( faceNormals[ i0 * 3 + 2 ] );
				buffers.normal.push( faceNormals[ i1 * 3 ] );
				buffers.normal.push( faceNormals[ i1 * 3 + 1 ] );
				buffers.normal.push( faceNormals[ i1 * 3 + 2 ] );
				buffers.normal.push( faceNormals[ i2 * 3 ] );
				buffers.normal.push( faceNormals[ i2 * 3 + 1 ] );
				buffers.normal.push( faceNormals[ i2 * 3 + 2 ] );
			}
			if ( geoInfo.uv ) {
				geoInfo.uv.forEach( function ( uv, j ) {
					if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = [];
					buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 ] );
					buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 + 1 ] );
					buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 ] );
					buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 + 1 ] );
					buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 ] );
					buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 + 1 ] );
				} );
			}
		}
	}
	addMorphTargets( parentGeo, parentGeoNode, morphTargets, preTransform ) {
		if ( morphTargets.length === 0 ) return;
		parentGeo.morphTargetsRelative = true;
		parentGeo.morphAttributes.position = [];
		// parentGeo.morphAttributes.normal = []; // not implemented
		const scope = this;
		morphTargets.forEach( function ( morphTarget ) {
			morphTarget.rawTargets.forEach( function ( rawTarget ) {
				const morphGeoNode = fbxTree.Objects.Geometry[ rawTarget.geoID ];
				if ( morphGeoNode !== undefined ) {
					scope.genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name );
				}
			} );
		} );
	}
	// a morph geometry node is similar to a standard  node, and the node is also contained
	// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal
	// and a special attribute Index defining which vertices of the original geometry are affected
	// Normal and position attributes only have data for the vertices that are affected by the morph
	genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, name ) {
		const vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : [];
		const morphPositionsSparse = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : [];
		const indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : [];
		const length = parentGeo.attributes.position.count * 3;
		const morphPositions = new Float32Array( length );
		for ( let i = 0; i < indices.length; i ++ ) {
			const morphIndex = indices[ i ] * 3;
			morphPositions[ morphIndex ] = morphPositionsSparse[ i * 3 ];
			morphPositions[ morphIndex + 1 ] = morphPositionsSparse[ i * 3 + 1 ];
			morphPositions[ morphIndex + 2 ] = morphPositionsSparse[ i * 3 + 2 ];
		}
		// TODO: add morph normal support
		const morphGeoInfo = {
			vertexIndices: vertexIndices,
			vertexPositions: morphPositions,
		};
		const morphBuffers = this.genBuffers( morphGeoInfo );
		const positionAttribute = new Float32BufferAttribute( morphBuffers.vertex, 3 );
		positionAttribute.name = name || morphGeoNode.attrName;
		positionAttribute.applyMatrix4( preTransform );
		parentGeo.morphAttributes.position.push( positionAttribute );
	}
	// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
	parseNormals( NormalNode ) {
		const mappingType = NormalNode.MappingInformationType;
		const referenceType = NormalNode.ReferenceInformationType;
		const buffer = NormalNode.Normals.a;
		let indexBuffer = [];
		if ( referenceType === 'IndexToDirect' ) {
			if ( 'NormalIndex' in NormalNode ) {
				indexBuffer = NormalNode.NormalIndex.a;
			} else if ( 'NormalsIndex' in NormalNode ) {
				indexBuffer = NormalNode.NormalsIndex.a;
			}
		}
		return {
			dataSize: 3,
			buffer: buffer,
			indices: indexBuffer,
			mappingType: mappingType,
			referenceType: referenceType
		};
	}
	// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
	parseUVs( UVNode ) {
		const mappingType = UVNode.MappingInformationType;
		const referenceType = UVNode.ReferenceInformationType;
		const buffer = UVNode.UV.a;
		let indexBuffer = [];
		if ( referenceType === 'IndexToDirect' ) {
			indexBuffer = UVNode.UVIndex.a;
		}
		return {
			dataSize: 2,
			buffer: buffer,
			indices: indexBuffer,
			mappingType: mappingType,
			referenceType: referenceType
		};
	}
	// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
	parseVertexColors( ColorNode ) {
		const mappingType = ColorNode.MappingInformationType;
		const referenceType = ColorNode.ReferenceInformationType;
		const buffer = ColorNode.Colors.a;
		let indexBuffer = [];
		if ( referenceType === 'IndexToDirect' ) {
			indexBuffer = ColorNode.ColorIndex.a;
		}
		for ( let i = 0, c = new Color(); i < buffer.length; i += 4 ) {
			c.fromArray( buffer, i ).convertSRGBToLinear().toArray( buffer, i );
		}
		return {
			dataSize: 4,
			buffer: buffer,
			indices: indexBuffer,
			mappingType: mappingType,
			referenceType: referenceType
		};
	}
	// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
	parseMaterialIndices( MaterialNode ) {
		const mappingType = MaterialNode.MappingInformationType;
		const referenceType = MaterialNode.ReferenceInformationType;
		if ( mappingType === 'NoMappingInformation' ) {
			return {
				dataSize: 1,
				buffer: [ 0 ],
				indices: [ 0 ],
				mappingType: 'AllSame',
				referenceType: referenceType
			};
		}
		const materialIndexBuffer = MaterialNode.Materials.a;
		// Since materials are stored as indices, there's a bit of a mismatch between FBX and what
		// we expect.So we create an intermediate buffer that points to the index in the buffer,
		// for conforming with the other functions we've written for other data.
		const materialIndices = [];
		for ( let i = 0; i < materialIndexBuffer.length; ++ i ) {
			materialIndices.push( i );
		}
		return {
			dataSize: 1,
			buffer: materialIndexBuffer,
			indices: materialIndices,
			mappingType: mappingType,
			referenceType: referenceType
		};
	}
	// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry
	parseNurbsGeometry( geoNode ) {
		const order = parseInt( geoNode.Order );
		if ( isNaN( order ) ) {
			console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id );
			return new BufferGeometry();
		}
		const degree = order - 1;
		const knots = geoNode.KnotVector.a;
		const controlPoints = [];
		const pointsValues = geoNode.Points.a;
		for ( let i = 0, l = pointsValues.length; i < l; i += 4 ) {
			controlPoints.push( new Vector4().fromArray( pointsValues, i ) );
		}
		let startKnot, endKnot;
		if ( geoNode.Form === 'Closed' ) {
			controlPoints.push( controlPoints[ 0 ] );
		} else if ( geoNode.Form === 'Periodic' ) {
			startKnot = degree;
			endKnot = knots.length - 1 - startKnot;
			for ( let i = 0; i < degree; ++ i ) {
				controlPoints.push( controlPoints[ i ] );
			}
		}
		const curve = new NURBSCurve( degree, knots, controlPoints, startKnot, endKnot );
		const points = curve.getPoints( controlPoints.length * 12 );
		return new BufferGeometry().setFromPoints( points );
	}
}
// parse animation data from FBXTree
class AnimationParser {
	// take raw animation clips and turn them into three.js animation clips
	parse() {
		const animationClips = [];
		const rawClips = this.parseClips();
		if ( rawClips !== undefined ) {
			for ( const key in rawClips ) {
				const rawClip = rawClips[ key ];
				const clip = this.addClip( rawClip );
				animationClips.push( clip );
			}
		}
		return animationClips;
	}
	parseClips() {
		// since the actual transformation data is stored in FBXTree.Objects.AnimationCurve,
		// if this is undefined we can safely assume there are no animations
		if ( fbxTree.Objects.AnimationCurve === undefined ) return undefined;
		const curveNodesMap = this.parseAnimationCurveNodes();
		this.parseAnimationCurves( curveNodesMap );
		const layersMap = this.parseAnimationLayers( curveNodesMap );
		const rawClips = this.parseAnimStacks( layersMap );
		return rawClips;
	}
	// parse nodes in FBXTree.Objects.AnimationCurveNode
	// each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation )
	// and is referenced by an AnimationLayer
	parseAnimationCurveNodes() {
		const rawCurveNodes = fbxTree.Objects.AnimationCurveNode;
		const curveNodesMap = new Map();
		for ( const nodeID in rawCurveNodes ) {
			const rawCurveNode = rawCurveNodes[ nodeID ];
			if ( rawCurveNode.attrName.match( /S|R|T|DeformPercent/ ) !== null ) {
				const curveNode = {
					id: rawCurveNode.id,
					attr: rawCurveNode.attrName,
					curves: {},
				};
				curveNodesMap.set( curveNode.id, curveNode );
			}
		}
		return curveNodesMap;
	}
	// parse nodes in FBXTree.Objects.AnimationCurve and connect them up to
	// previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated
	// axis ( e.g. times and values of x rotation)
	parseAnimationCurves( curveNodesMap ) {
		const rawCurves = fbxTree.Objects.AnimationCurve;
		// TODO: Many values are identical up to roundoff error, but won't be optimised
		// e.g. position times: [0, 0.4, 0. 8]
		// position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809]
		// clearly, this should be optimised to
		// times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809]
		// this shows up in nearly every FBX file, and generally time array is length > 100
		for ( const nodeID in rawCurves ) {
			const animationCurve = {
				id: rawCurves[ nodeID ].id,
				times: rawCurves[ nodeID ].KeyTime.a.map( convertFBXTimeToSeconds ),
				values: rawCurves[ nodeID ].KeyValueFloat.a,
			};
			const relationships = connections.get( animationCurve.id );
			if ( relationships !== undefined ) {
				const animationCurveID = relationships.parents[ 0 ].ID;
				const animationCurveRelationship = relationships.parents[ 0 ].relationship;
				if ( animationCurveRelationship.match( /X/ ) ) {
					curveNodesMap.get( animationCurveID ).curves[ 'x' ] = animationCurve;
				} else if ( animationCurveRelationship.match( /Y/ ) ) {
					curveNodesMap.get( animationCurveID ).curves[ 'y' ] = animationCurve;
				} else if ( animationCurveRelationship.match( /Z/ ) ) {
					curveNodesMap.get( animationCurveID ).curves[ 'z' ] = animationCurve;
				} else if ( animationCurveRelationship.match( /DeformPercent/ ) && curveNodesMap.has( animationCurveID ) ) {
					curveNodesMap.get( animationCurveID ).curves[ 'morph' ] = animationCurve;
				}
			}
		}
	}
	// parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references
	// to various AnimationCurveNodes and is referenced by an AnimationStack node
	// note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack
	parseAnimationLayers( curveNodesMap ) {
		const rawLayers = fbxTree.Objects.AnimationLayer;
		const layersMap = new Map();
		for ( const nodeID in rawLayers ) {
			const layerCurveNodes = [];
			const connection = connections.get( parseInt( nodeID ) );
			if ( connection !== undefined ) {
				// all the animationCurveNodes used in the layer
				const children = connection.children;
				children.forEach( function ( child, i ) {
					if ( curveNodesMap.has( child.ID ) ) {
						const curveNode = curveNodesMap.get( child.ID );
						// check that the curves are defined for at least one axis, otherwise ignore the curveNode
						if ( curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined ) {
							if ( layerCurveNodes[ i ] === undefined ) {
								const modelID = connections.get( child.ID ).parents.filter( function ( parent ) {
									return parent.relationship !== undefined;
								} )[ 0 ].ID;
								if ( modelID !== undefined ) {
									const rawModel = fbxTree.Objects.Model[ modelID.toString() ];
									if ( rawModel === undefined ) {
										console.warn( 'THREE.FBXLoader: Encountered a unused curve.', child );
										return;
									}
									const node = {
										modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
										ID: rawModel.id,
										initialPosition: [ 0, 0, 0 ],
										initialRotation: [ 0, 0, 0 ],
										initialScale: [ 1, 1, 1 ],
									};
									sceneGraph.traverse( function ( child ) {
										if ( child.ID === rawModel.id ) {
											node.transform = child.matrix;
											if ( child.userData.transformData ) node.eulerOrder = child.userData.transformData.eulerOrder;
										}
									} );
									if ( ! node.transform ) node.transform = new Matrix4();
									// if the animated model is pre rotated, we'll have to apply the pre rotations to every
									// animation value as well
									if ( 'PreRotation' in rawModel ) node.preRotation = rawModel.PreRotation.value;
									if ( 'PostRotation' in rawModel ) node.postRotation = rawModel.PostRotation.value;
									layerCurveNodes[ i ] = node;
								}
							}
							if ( layerCurveNodes[ i ] ) layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
						} else if ( curveNode.curves.morph !== undefined ) {
							if ( layerCurveNodes[ i ] === undefined ) {
								const deformerID = connections.get( child.ID ).parents.filter( function ( parent ) {
									return parent.relationship !== undefined;
								} )[ 0 ].ID;
								const morpherID = connections.get( deformerID ).parents[ 0 ].ID;
								const geoID = connections.get( morpherID ).parents[ 0 ].ID;
								// assuming geometry is not used in more than one model
								const modelID = connections.get( geoID ).parents[ 0 ].ID;
								const rawModel = fbxTree.Objects.Model[ modelID ];
								const node = {
									modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
									morphName: fbxTree.Objects.Deformer[ deformerID ].attrName,
								};
								layerCurveNodes[ i ] = node;
							}
							layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
						}
					}
				} );
				layersMap.set( parseInt( nodeID ), layerCurveNodes );
			}
		}
		return layersMap;
	}
	// parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation
	// hierarchy. Each Stack node will be used to create a AnimationClip
	parseAnimStacks( layersMap ) {
		const rawStacks = fbxTree.Objects.AnimationStack;
		// connect the stacks (clips) up to the layers
		const rawClips = {};
		for ( const nodeID in rawStacks ) {
			const children = connections.get( parseInt( nodeID ) ).children;
			if ( children.length > 1 ) {
				// it seems like stacks will always be associated with a single layer. But just in case there are files
				// where there are multiple layers per stack, we'll display a warning
				console.warn( 'THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.' );
			}
			const layer = layersMap.get( children[ 0 ].ID );
			rawClips[ nodeID ] = {
				name: rawStacks[ nodeID ].attrName,
				layer: layer,
			};
		}
		return rawClips;
	}
	addClip( rawClip ) {
		let tracks = [];
		const scope = this;
		rawClip.layer.forEach( function ( rawTracks ) {
			tracks = tracks.concat( scope.generateTracks( rawTracks ) );
		} );
		return new AnimationClip( rawClip.name, - 1, tracks );
	}
	generateTracks( rawTracks ) {
		const tracks = [];
		let initialPosition = new Vector3();
		let initialScale = new Vector3();
		if ( rawTracks.transform ) rawTracks.transform.decompose( initialPosition, new Quaternion(), initialScale );
		initialPosition = initialPosition.toArray();
		initialScale = initialScale.toArray();
		if ( rawTracks.T !== undefined && Object.keys( rawTracks.T.curves ).length > 0 ) {
			const positionTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position' );
			if ( positionTrack !== undefined ) tracks.push( positionTrack );
		}
		if ( rawTracks.R !== undefined && Object.keys( rawTracks.R.curves ).length > 0 ) {
			const rotationTrack = this.generateRotationTrack( rawTracks.modelName, rawTracks.R.curves, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder );
			if ( rotationTrack !== undefined ) tracks.push( rotationTrack );
		}
		if ( rawTracks.S !== undefined && Object.keys( rawTracks.S.curves ).length > 0 ) {
			const scaleTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale' );
			if ( scaleTrack !== undefined ) tracks.push( scaleTrack );
		}
		if ( rawTracks.DeformPercent !== undefined ) {
			const morphTrack = this.generateMorphTrack( rawTracks );
			if ( morphTrack !== undefined ) tracks.push( morphTrack );
		}
		return tracks;
	}
	generateVectorTrack( modelName, curves, initialValue, type ) {
		const times = this.getTimesForAllAxes( curves );
		const values = this.getKeyframeTrackValues( times, curves, initialValue );
		return new VectorKeyframeTrack( modelName + '.' + type, times, values );
	}
	generateRotationTrack( modelName, curves, preRotation, postRotation, eulerOrder ) {
		let times;
		let values;
		if ( curves.x !== undefined && curves.y !== undefined && curves.z !== undefined ) {
			const result = this.interpolateRotations( curves.x, curves.y, curves.z, eulerOrder );
			times = result[ 0 ];
			values = result[ 1 ];
		}
		if ( preRotation !== undefined ) {
			preRotation = preRotation.map( MathUtils.degToRad );
			preRotation.push( eulerOrder );
			preRotation = new Euler().fromArray( preRotation );
			preRotation = new Quaternion().setFromEuler( preRotation );
		}
		if ( postRotation !== undefined ) {
			postRotation = postRotation.map( MathUtils.degToRad );
			postRotation.push( eulerOrder );
			postRotation = new Euler().fromArray( postRotation );
			postRotation = new Quaternion().setFromEuler( postRotation ).invert();
		}
		const quaternion = new Quaternion();
		const euler = new Euler();
		const quaternionValues = [];
		if ( ! values || ! times ) return new QuaternionKeyframeTrack( modelName + '.quaternion', [], [] );
		for ( let i = 0; i < values.length; i += 3 ) {
			euler.set( values[ i ], values[ i + 1 ], values[ i + 2 ], eulerOrder );
			quaternion.setFromEuler( euler );
			if ( preRotation !== undefined ) quaternion.premultiply( preRotation );
			if ( postRotation !== undefined ) quaternion.multiply( postRotation );
			// Check unroll
			if ( i > 2 ) {
				const prevQuat = new Quaternion().fromArray(
					quaternionValues,
					( ( i - 3 ) / 3 ) * 4
				);
				if ( prevQuat.dot( quaternion ) < 0 ) {
					quaternion.set( - quaternion.x, - quaternion.y, - quaternion.z, - quaternion.w );
				}
			}
			quaternion.toArray( quaternionValues, ( i / 3 ) * 4 );
		}
		return new QuaternionKeyframeTrack( modelName + '.quaternion', times, quaternionValues );
	}
	generateMorphTrack( rawTracks ) {
		const curves = rawTracks.DeformPercent.curves.morph;
		const values = curves.values.map( function ( val ) {
			return val / 100;
		} );
		const morphNum = sceneGraph.getObjectByName( rawTracks.modelName ).morphTargetDictionary[ rawTracks.morphName ];
		return new NumberKeyframeTrack( rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values );
	}
	// For all animated objects, times are defined separately for each axis
	// Here we'll combine the times into one sorted array without duplicates
	getTimesForAllAxes( curves ) {
		let times = [];
		// first join together the times for each axis, if defined
		if ( curves.x !== undefined ) times = times.concat( curves.x.times );
		if ( curves.y !== undefined ) times = times.concat( curves.y.times );
		if ( curves.z !== undefined ) times = times.concat( curves.z.times );
		// then sort them
		times = times.sort( function ( a, b ) {
			return a - b;
		} );
		// and remove duplicates
		if ( times.length > 1 ) {
			let targetIndex = 1;
			let lastValue = times[ 0 ];
			for ( let i = 1; i < times.length; i ++ ) {
				const currentValue = times[ i ];
				if ( currentValue !== lastValue ) {
					times[ targetIndex ] = currentValue;
					lastValue = currentValue;
					targetIndex ++;
				}
			}
			times = times.slice( 0, targetIndex );
		}
		return times;
	}
	getKeyframeTrackValues( times, curves, initialValue ) {
		const prevValue = initialValue;
		const values = [];
		let xIndex = - 1;
		let yIndex = - 1;
		let zIndex = - 1;
		times.forEach( function ( time ) {
			if ( curves.x ) xIndex = curves.x.times.indexOf( time );
			if ( curves.y ) yIndex = curves.y.times.indexOf( time );
			if ( curves.z ) zIndex = curves.z.times.indexOf( time );
			// if there is an x value defined for this frame, use that
			if ( xIndex !== - 1 ) {
				const xValue = curves.x.values[ xIndex ];
				values.push( xValue );
				prevValue[ 0 ] = xValue;
			} else {
				// otherwise use the x value from the previous frame
				values.push( prevValue[ 0 ] );
			}
			if ( yIndex !== - 1 ) {
				const yValue = curves.y.values[ yIndex ];
				values.push( yValue );
				prevValue[ 1 ] = yValue;
			} else {
				values.push( prevValue[ 1 ] );
			}
			if ( zIndex !== - 1 ) {
				const zValue = curves.z.values[ zIndex ];
				values.push( zValue );
				prevValue[ 2 ] = zValue;
			} else {
				values.push( prevValue[ 2 ] );
			}
		} );
		return values;
	}
	// Rotations are defined as Euler angles which can have values  of any size
	// These will be converted to quaternions which don't support values greater than
	// PI, so we'll interpolate large rotations
	interpolateRotations( curvex, curvey, curvez, eulerOrder ) {
		const times = [];
		const values = [];
		// Add first frame
		times.push( curvex.times[ 0 ] );
		values.push( MathUtils.degToRad( curvex.values[ 0 ] ) );
		values.push( MathUtils.degToRad( curvey.values[ 0 ] ) );
		values.push( MathUtils.degToRad( curvez.values[ 0 ] ) );
		for ( let i = 1; i < curvex.values.length; i ++ ) {
			const initialValue = [
				curvex.values[ i - 1 ],
				curvey.values[ i - 1 ],
				curvez.values[ i - 1 ],
			];
			if ( isNaN( initialValue[ 0 ] ) || isNaN( initialValue[ 1 ] ) || isNaN( initialValue[ 2 ] ) ) {
				continue;
			}
			const initialValueRad = initialValue.map( MathUtils.degToRad );
			const currentValue = [
				curvex.values[ i ],
				curvey.values[ i ],
				curvez.values[ i ],
			];
			if ( isNaN( currentValue[ 0 ] ) || isNaN( currentValue[ 1 ] ) || isNaN( currentValue[ 2 ] ) ) {
				continue;
			}
			const currentValueRad = currentValue.map( MathUtils.degToRad );
			const valuesSpan = [
				currentValue[ 0 ] - initialValue[ 0 ],
				currentValue[ 1 ] - initialValue[ 1 ],
				currentValue[ 2 ] - initialValue[ 2 ],
			];
			const absoluteSpan = [
				Math.abs( valuesSpan[ 0 ] ),
				Math.abs( valuesSpan[ 1 ] ),
				Math.abs( valuesSpan[ 2 ] ),
			];
			if ( absoluteSpan[ 0 ] >= 180 || absoluteSpan[ 1 ] >= 180 || absoluteSpan[ 2 ] >= 180 ) {
				const maxAbsSpan = Math.max( ...absoluteSpan );
				const numSubIntervals = maxAbsSpan / 180;
				const E1 = new Euler( ...initialValueRad, eulerOrder );
				const E2 = new Euler( ...currentValueRad, eulerOrder );
				const Q1 = new Quaternion().setFromEuler( E1 );
				const Q2 = new Quaternion().setFromEuler( E2 );
				// Check unroll
				if ( Q1.dot( Q2 ) ) {
					Q2.set( - Q2.x, - Q2.y, - Q2.z, - Q2.w );
				}
				// Interpolate
				const initialTime = curvex.times[ i - 1 ];
				const timeSpan = curvex.times[ i ] - initialTime;
				const Q = new Quaternion();
				const E = new Euler();
				for ( let t = 0; t < 1; t += 1 / numSubIntervals ) {
					Q.copy( Q1.clone().slerp( Q2.clone(), t ) );
					times.push( initialTime + t * timeSpan );
					E.setFromQuaternion( Q, eulerOrder );
					values.push( E.x );
					values.push( E.y );
					values.push( E.z );
				}
			} else {
				times.push( curvex.times[ i ] );
				values.push( MathUtils.degToRad( curvex.values[ i ] ) );
				values.push( MathUtils.degToRad( curvey.values[ i ] ) );
				values.push( MathUtils.degToRad( curvez.values[ i ] ) );
			}
		}
		return [ times, values ];
	}
}
// parse an FBX file in ASCII format
class TextParser {
	getPrevNode() {
		return this.nodeStack[ this.currentIndent - 2 ];
	}
	getCurrentNode() {
		return this.nodeStack[ this.currentIndent - 1 ];
	}
	getCurrentProp() {
		return this.currentProp;
	}
	pushStack( node ) {
		this.nodeStack.push( node );
		this.currentIndent += 1;
	}
	popStack() {
		this.nodeStack.pop();
		this.currentIndent -= 1;
	}
	setCurrentProp( val, name ) {
		this.currentProp = val;
		this.currentPropName = name;
	}
	parse( text ) {
		this.currentIndent = 0;
		this.allNodes = new FBXTree();
		this.nodeStack = [];
		this.currentProp = [];
		this.currentPropName = '';
		const scope = this;
		const split = text.split( /[\r\n]+/ );
		split.forEach( function ( line, i ) {
			const matchComment = line.match( /^[\s\t]*;/ );
			const matchEmpty = line.match( /^[\s\t]*$/ );
			if ( matchComment || matchEmpty ) return;
			const matchBeginning = line.match( '^\\t{' + scope.currentIndent + '}(\\w+):(.*){', '' );
			const matchProperty = line.match( '^\\t{' + ( scope.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' );
			const matchEnd = line.match( '^\\t{' + ( scope.currentIndent - 1 ) + '}}' );
			if ( matchBeginning ) {
				scope.parseNodeBegin( line, matchBeginning );
			} else if ( matchProperty ) {
				scope.parseNodeProperty( line, matchProperty, split[ ++ i ] );
			} else if ( matchEnd ) {
				scope.popStack();
			} else if ( line.match( /^[^\s\t}]/ ) ) {
				// large arrays are split over multiple lines terminated with a ',' character
				// if this is encountered the line needs to be joined to the previous line
				scope.parseNodePropertyContinued( line );
			}
		} );
		return this.allNodes;
	}
	parseNodeBegin( line, property ) {
		const nodeName = property[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' );
		const nodeAttrs = property[ 2 ].split( ',' ).map( function ( attr ) {
			return attr.trim().replace( /^"/, '' ).replace( /"$/, '' );
		} );
		const node = { name: nodeName };
		const attrs = this.parseNodeAttr( nodeAttrs );
		const currentNode = this.getCurrentNode();
		// a top node
		if ( this.currentIndent === 0 ) {
			this.allNodes.add( nodeName, node );
		} else { // a subnode
			// if the subnode already exists, append it
			if ( nodeName in currentNode ) {
				// special case Pose needs PoseNodes as an array
				if ( nodeName === 'PoseNode' ) {
					currentNode.PoseNode.push( node );
				} else if ( currentNode[ nodeName ].id !== undefined ) {
					currentNode[ nodeName ] = {};
					currentNode[ nodeName ][ currentNode[ nodeName ].id ] = currentNode[ nodeName ];
				}
				if ( attrs.id !== '' ) currentNode[ nodeName ][ attrs.id ] = node;
			} else if ( typeof attrs.id === 'number' ) {
				currentNode[ nodeName ] = {};
				currentNode[ nodeName ][ attrs.id ] = node;
			} else if ( nodeName !== 'Properties70' ) {
				if ( nodeName === 'PoseNode' )	currentNode[ nodeName ] = [ node ];
				else currentNode[ nodeName ] = node;
			}
		}
		if ( typeof attrs.id === 'number' ) node.id = attrs.id;
		if ( attrs.name !== '' ) node.attrName = attrs.name;
		if ( attrs.type !== '' ) node.attrType = attrs.type;
		this.pushStack( node );
	}
	parseNodeAttr( attrs ) {
		let id = attrs[ 0 ];
		if ( attrs[ 0 ] !== '' ) {
			id = parseInt( attrs[ 0 ] );
			if ( isNaN( id ) ) {
				id = attrs[ 0 ];
			}
		}
		let name = '', type = '';
		if ( attrs.length > 1 ) {
			name = attrs[ 1 ].replace( /^(\w+)::/, '' );
			type = attrs[ 2 ];
		}
		return { id: id, name: name, type: type };
	}
	parseNodeProperty( line, property, contentLine ) {
		let propName = property[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
		let propValue = property[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
		// for special case: base64 image data follows "Content: ," line
		//	Content: ,
		//	 "/9j/4RDaRXhpZgAATU0A..."
		if ( propName === 'Content' && propValue === ',' ) {
			propValue = contentLine.replace( /"/g, '' ).replace( /,$/, '' ).trim();
		}
		const currentNode = this.getCurrentNode();
		const parentName = currentNode.name;
		if ( parentName === 'Properties70' ) {
			this.parseNodeSpecialProperty( line, propName, propValue );
			return;
		}
		// Connections
		if ( propName === 'C' ) {
			const connProps = propValue.split( ',' ).slice( 1 );
			const from = parseInt( connProps[ 0 ] );
			const to = parseInt( connProps[ 1 ] );
			let rest = propValue.split( ',' ).slice( 3 );
			rest = rest.map( function ( elem ) {
				return elem.trim().replace( /^"/, '' );
			} );
			propName = 'connections';
			propValue = [ from, to ];
			append( propValue, rest );
			if ( currentNode[ propName ] === undefined ) {
				currentNode[ propName ] = [];
			}
		}
		// Node
		if ( propName === 'Node' ) currentNode.id = propValue;
		// connections
		if ( propName in currentNode && Array.isArray( currentNode[ propName ] ) ) {
			currentNode[ propName ].push( propValue );
		} else {
			if ( propName !== 'a' ) currentNode[ propName ] = propValue;
			else currentNode.a = propValue;
		}
		this.setCurrentProp( currentNode, propName );
		// convert string to array, unless it ends in ',' in which case more will be added to it
		if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) {
			currentNode.a = parseNumberArray( propValue );
		}
	}
	parseNodePropertyContinued( line ) {
		const currentNode = this.getCurrentNode();
		currentNode.a += line;
		// if the line doesn't end in ',' we have reached the end of the property value
		// so convert the string to an array
		if ( line.slice( - 1 ) !== ',' ) {
			currentNode.a = parseNumberArray( currentNode.a );
		}
	}
	// parse "Property70"
	parseNodeSpecialProperty( line, propName, propValue ) {
		// split this
		// P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1
		// into array like below
		// ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ]
		const props = propValue.split( '",' ).map( function ( prop ) {
			return prop.trim().replace( /^\"/, '' ).replace( /\s/, '_' );
		} );
		const innerPropName = props[ 0 ];
		const innerPropType1 = props[ 1 ];
		const innerPropType2 = props[ 2 ];
		const innerPropFlag = props[ 3 ];
		let innerPropValue = props[ 4 ];
		// cast values where needed, otherwise leave as strings
		switch ( innerPropType1 ) {
			case 'int':
			case 'enum':
			case 'bool':
			case 'ULongLong':
			case 'double':
			case 'Number':
			case 'FieldOfView':
				innerPropValue = parseFloat( innerPropValue );
				break;
			case 'Color':
			case 'ColorRGB':
			case 'Vector3D':
			case 'Lcl_Translation':
			case 'Lcl_Rotation':
			case 'Lcl_Scaling':
				innerPropValue = parseNumberArray( innerPropValue );
				break;
		}
		// CAUTION: these props must append to parent's parent
		this.getPrevNode()[ innerPropName ] = {
			'type': innerPropType1,
			'type2': innerPropType2,
			'flag': innerPropFlag,
			'value': innerPropValue
		};
		this.setCurrentProp( this.getPrevNode(), innerPropName );
	}
}
// Parse an FBX file in Binary format
class BinaryParser {
	parse( buffer ) {
		const reader = new BinaryReader( buffer );
		reader.skip( 23 ); // skip magic 23 bytes
		const version = reader.getUint32();
		if ( version < 6400 ) {
			throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + version );
		}
		const allNodes = new FBXTree();
		while ( ! this.endOfContent( reader ) ) {
			const node = this.parseNode( reader, version );
			if ( node !== null ) allNodes.add( node.name, node );
		}
		return allNodes;
	}
	// Check if reader has reached the end of content.
	endOfContent( reader ) {
		// footer size: 160bytes + 16-byte alignment padding
		// - 16bytes: magic
		// - padding til 16-byte alignment (at least 1byte?)
		//	(seems like some exporters embed fixed 15 or 16bytes?)
		// - 4bytes: magic
		// - 4bytes: version
		// - 120bytes: zero
		// - 16bytes: magic
		if ( reader.size() % 16 === 0 ) {
			return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size();
		} else {
			return reader.getOffset() + 160 + 16 >= reader.size();
		}
	}
	// recursively parse nodes until the end of the file is reached
	parseNode( reader, version ) {
		const node = {};
		// The first three data sizes depends on version.
		const endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
		const numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
		( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used
		const nameLen = reader.getUint8();
		const name = reader.getString( nameLen );
		// Regards this node as NULL-record if endOffset is zero
		if ( endOffset === 0 ) return null;
		const propertyList = [];
		for ( let i = 0; i < numProperties; i ++ ) {
			propertyList.push( this.parseProperty( reader ) );
		}
		// Regards the first three elements in propertyList as id, attrName, and attrType
		const id = propertyList.length > 0 ? propertyList[ 0 ] : '';
		const attrName = propertyList.length > 1 ? propertyList[ 1 ] : '';
		const attrType = propertyList.length > 2 ? propertyList[ 2 ] : '';
		// check if this node represents just a single property
		// like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]}
		node.singleProperty = ( numProperties === 1 && reader.getOffset() === endOffset ) ? true : false;
		while ( endOffset > reader.getOffset() ) {
			const subNode = this.parseNode( reader, version );
			if ( subNode !== null ) this.parseSubNode( name, node, subNode );
		}
		node.propertyList = propertyList; // raw property list used by parent
		if ( typeof id === 'number' ) node.id = id;
		if ( attrName !== '' ) node.attrName = attrName;
		if ( attrType !== '' ) node.attrType = attrType;
		if ( name !== '' ) node.name = name;
		return node;
	}
	parseSubNode( name, node, subNode ) {
		// special case: child node is single property
		if ( subNode.singleProperty === true ) {
			const value = subNode.propertyList[ 0 ];
			if ( Array.isArray( value ) ) {
				node[ subNode.name ] = subNode;
				subNode.a = value;
			} else {
				node[ subNode.name ] = value;
			}
		} else if ( name === 'Connections' && subNode.name === 'C' ) {
			const array = [];
			subNode.propertyList.forEach( function ( property, i ) {
				// first Connection is FBX type (OO, OP, etc.). We'll discard these
				if ( i !== 0 ) array.push( property );
			} );
			if ( node.connections === undefined ) {
				node.connections = [];
			}
			node.connections.push( array );
		} else if ( subNode.name === 'Properties70' ) {
			const keys = Object.keys( subNode );
			keys.forEach( function ( key ) {
				node[ key ] = subNode[ key ];
			} );
		} else if ( name === 'Properties70' && subNode.name === 'P' ) {
			let innerPropName = subNode.propertyList[ 0 ];
			let innerPropType1 = subNode.propertyList[ 1 ];
			const innerPropType2 = subNode.propertyList[ 2 ];
			const innerPropFlag = subNode.propertyList[ 3 ];
			let innerPropValue;
			if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' );
			if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' );
			if ( innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) {
				innerPropValue = [
					subNode.propertyList[ 4 ],
					subNode.propertyList[ 5 ],
					subNode.propertyList[ 6 ]
				];
			} else {
				innerPropValue = subNode.propertyList[ 4 ];
			}
			// this will be copied to parent, see above
			node[ innerPropName ] = {
				'type': innerPropType1,
				'type2': innerPropType2,
				'flag': innerPropFlag,
				'value': innerPropValue
			};
		} else if ( node[ subNode.name ] === undefined ) {
			if ( typeof subNode.id === 'number' ) {
				node[ subNode.name ] = {};
				node[ subNode.name ][ subNode.id ] = subNode;
			} else {
				node[ subNode.name ] = subNode;
			}
		} else {
			if ( subNode.name === 'PoseNode' ) {
				if ( ! Array.isArray( node[ subNode.name ] ) ) {
					node[ subNode.name ] = [ node[ subNode.name ] ];
				}
				node[ subNode.name ].push( subNode );
			} else if ( node[ subNode.name ][ subNode.id ] === undefined ) {
				node[ subNode.name ][ subNode.id ] = subNode;
			}
		}
	}
	parseProperty( reader ) {
		const type = reader.getString( 1 );
		let length;
		switch ( type ) {
			case 'C':
				return reader.getBoolean();
			case 'D':
				return reader.getFloat64();
			case 'F':
				return reader.getFloat32();
			case 'I':
				return reader.getInt32();
			case 'L':
				return reader.getInt64();
			case 'R':
				length = reader.getUint32();
				return reader.getArrayBuffer( length );
			case 'S':
				length = reader.getUint32();
				return reader.getString( length );
			case 'Y':
				return reader.getInt16();
			case 'b':
			case 'c':
			case 'd':
			case 'f':
			case 'i':
			case 'l':
				const arrayLength = reader.getUint32();
				const encoding = reader.getUint32(); // 0: non-compressed, 1: compressed
				const compressedLength = reader.getUint32();
				if ( encoding === 0 ) {
					switch ( type ) {
						case 'b':
						case 'c':
							return reader.getBooleanArray( arrayLength );
						case 'd':
							return reader.getFloat64Array( arrayLength );
						case 'f':
							return reader.getFloat32Array( arrayLength );
						case 'i':
							return reader.getInt32Array( arrayLength );
						case 'l':
							return reader.getInt64Array( arrayLength );
					}
				}
				const data = fflate.unzlibSync( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) );
				const reader2 = new BinaryReader( data.buffer );
				switch ( type ) {
					case 'b':
					case 'c':
						return reader2.getBooleanArray( arrayLength );
					case 'd':
						return reader2.getFloat64Array( arrayLength );
					case 'f':
						return reader2.getFloat32Array( arrayLength );
					case 'i':
						return reader2.getInt32Array( arrayLength );
					case 'l':
						return reader2.getInt64Array( arrayLength );
				}
				break; // cannot happen but is required by the DeepScan
			default:
				throw new Error( 'THREE.FBXLoader: Unknown property type ' + type );
		}
	}
}
class BinaryReader {
	constructor( buffer, littleEndian ) {
		this.dv = new DataView( buffer );
		this.offset = 0;
		this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true;
		this._textDecoder = new TextDecoder();
	}
	getOffset() {
		return this.offset;
	}
	size() {
		return this.dv.buffer.byteLength;
	}
	skip( length ) {
		this.offset += length;
	}
	// seems like true/false representation depends on exporter.
	// true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54)
	// then sees LSB.
	getBoolean() {
		return ( this.getUint8() & 1 ) === 1;
	}
	getBooleanArray( size ) {
		const a = [];
		for ( let i = 0; i < size; i ++ ) {
			a.push( this.getBoolean() );
		}
		return a;
	}
	getUint8() {
		const value = this.dv.getUint8( this.offset );
		this.offset += 1;
		return value;
	}
	getInt16() {
		const value = this.dv.getInt16( this.offset, this.littleEndian );
		this.offset += 2;
		return value;
	}
	getInt32() {
		const value = this.dv.getInt32( this.offset, this.littleEndian );
		this.offset += 4;
		return value;
	}
	getInt32Array( size ) {
		const a = [];
		for ( let i = 0; i < size; i ++ ) {
			a.push( this.getInt32() );
		}
		return a;
	}
	getUint32() {
		const value = this.dv.getUint32( this.offset, this.littleEndian );
		this.offset += 4;
		return value;
	}
	// JavaScript doesn't support 64-bit integer so calculate this here
	// 1 << 32 will return 1 so using multiply operation instead here.
	// There's a possibility that this method returns wrong value if the value
	// is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER.
	// TODO: safely handle 64-bit integer
	getInt64() {
		let low, high;
		if ( this.littleEndian ) {
			low = this.getUint32();
			high = this.getUint32();
		} else {
			high = this.getUint32();
			low = this.getUint32();
		}
		// calculate negative value
		if ( high & 0x80000000 ) {
			high = ~ high & 0xFFFFFFFF;
			low = ~ low & 0xFFFFFFFF;
			if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF;
			low = ( low + 1 ) & 0xFFFFFFFF;
			return - ( high * 0x100000000 + low );
		}
		return high * 0x100000000 + low;
	}
	getInt64Array( size ) {
		const a = [];
		for ( let i = 0; i < size; i ++ ) {
			a.push( this.getInt64() );
		}
		return a;
	}
	// Note: see getInt64() comment
	getUint64() {
		let low, high;
		if ( this.littleEndian ) {
			low = this.getUint32();
			high = this.getUint32();
		} else {
			high = this.getUint32();
			low = this.getUint32();
		}
		return high * 0x100000000 + low;
	}
	getFloat32() {
		const value = this.dv.getFloat32( this.offset, this.littleEndian );
		this.offset += 4;
		return value;
	}
	getFloat32Array( size ) {
		const a = [];
		for ( let i = 0; i < size; i ++ ) {
			a.push( this.getFloat32() );
		}
		return a;
	}
	getFloat64() {
		const value = this.dv.getFloat64( this.offset, this.littleEndian );
		this.offset += 8;
		return value;
	}
	getFloat64Array( size ) {
		const a = [];
		for ( let i = 0; i < size; i ++ ) {
			a.push( this.getFloat64() );
		}
		return a;
	}
	getArrayBuffer( size ) {
		const value = this.dv.buffer.slice( this.offset, this.offset + size );
		this.offset += size;
		return value;
	}
	getString( size ) {
		const start = this.offset;
		let a = new Uint8Array( this.dv.buffer, start, size );
		this.skip( size );
		const nullByte = a.indexOf( 0 );
		if ( nullByte >= 0 ) a = new Uint8Array( this.dv.buffer, start, nullByte );
		return this._textDecoder.decode( a );
	}
}
// FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format)
// and BinaryParser( FBX Binary format)
class FBXTree {
	add( key, val ) {
		this[ key ] = val;
	}
}
// ************** UTILITY FUNCTIONS **************
function isFbxFormatBinary( buffer ) {
	const CORRECT = 'Kaydara\u0020FBX\u0020Binary\u0020\u0020\0';
	return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length );
}
function isFbxFormatASCII( text ) {
	const CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ];
	let cursor = 0;
	function read( offset ) {
		const result = text[ offset - 1 ];
		text = text.slice( cursor + offset );
		cursor ++;
		return result;
	}
	for ( let i = 0; i < CORRECT.length; ++ i ) {
		const num = read( 1 );
		if ( num === CORRECT[ i ] ) {
			return false;
		}
	}
	return true;
}
function getFbxVersion( text ) {
	const versionRegExp = /FBXVersion: (\d+)/;
	const match = text.match( versionRegExp );
	if ( match ) {
		const version = parseInt( match[ 1 ] );
		return version;
	}
	throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' );
}
// Converts FBX ticks into real time seconds.
function convertFBXTimeToSeconds( time ) {
	return time / 46186158000;
}
const dataArray = [];
// extracts the data from the correct position in the FBX array based on indexing type
function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
	let index;
	switch ( infoObject.mappingType ) {
		case 'ByPolygonVertex' :
			index = polygonVertexIndex;
			break;
		case 'ByPolygon' :
			index = polygonIndex;
			break;
		case 'ByVertice' :
			index = vertexIndex;
			break;
		case 'AllSame' :
			index = infoObject.indices[ 0 ];
			break;
		default :
			console.warn( 'THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType );
	}
	if ( infoObject.referenceType === 'IndexToDirect' ) index = infoObject.indices[ index ];
	const from = index * infoObject.dataSize;
	const to = from + infoObject.dataSize;
	return slice( dataArray, infoObject.buffer, from, to );
}
const tempEuler = new Euler();
const tempVec = new Vector3();
// generate transformation from FBX transform data
// ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm
// ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e
function generateTransform( transformData ) {
	const lTranslationM = new Matrix4();
	const lPreRotationM = new Matrix4();
	const lRotationM = new Matrix4();
	const lPostRotationM = new Matrix4();
	const lScalingM = new Matrix4();
	const lScalingPivotM = new Matrix4();
	const lScalingOffsetM = new Matrix4();
	const lRotationOffsetM = new Matrix4();
	const lRotationPivotM = new Matrix4();
	const lParentGX = new Matrix4();
	const lParentLX = new Matrix4();
	const lGlobalT = new Matrix4();
	const inheritType = ( transformData.inheritType ) ? transformData.inheritType : 0;
	if ( transformData.translation ) lTranslationM.setPosition( tempVec.fromArray( transformData.translation ) );
	if ( transformData.preRotation ) {
		const array = transformData.preRotation.map( MathUtils.degToRad );
		array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER );
		lPreRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
	}
	if ( transformData.rotation ) {
		const array = transformData.rotation.map( MathUtils.degToRad );
		array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER );
		lRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
	}
	if ( transformData.postRotation ) {
		const array = transformData.postRotation.map( MathUtils.degToRad );
		array.push( transformData.eulerOrder || Euler.DEFAULT_ORDER );
		lPostRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
		lPostRotationM.invert();
	}
	if ( transformData.scale ) lScalingM.scale( tempVec.fromArray( transformData.scale ) );
	// Pivots and offsets
	if ( transformData.scalingOffset ) lScalingOffsetM.setPosition( tempVec.fromArray( transformData.scalingOffset ) );
	if ( transformData.scalingPivot ) lScalingPivotM.setPosition( tempVec.fromArray( transformData.scalingPivot ) );
	if ( transformData.rotationOffset ) lRotationOffsetM.setPosition( tempVec.fromArray( transformData.rotationOffset ) );
	if ( transformData.rotationPivot ) lRotationPivotM.setPosition( tempVec.fromArray( transformData.rotationPivot ) );
	// parent transform
	if ( transformData.parentMatrixWorld ) {
		lParentLX.copy( transformData.parentMatrix );
		lParentGX.copy( transformData.parentMatrixWorld );
	}
	const lLRM = lPreRotationM.clone().multiply( lRotationM ).multiply( lPostRotationM );
	// Global Rotation
	const lParentGRM = new Matrix4();
	lParentGRM.extractRotation( lParentGX );
	// Global Shear*Scaling
	const lParentTM = new Matrix4();
	lParentTM.copyPosition( lParentGX );
	const lParentGRSM = lParentTM.clone().invert().multiply( lParentGX );
	const lParentGSM = lParentGRM.clone().invert().multiply( lParentGRSM );
	const lLSM = lScalingM;
	const lGlobalRS = new Matrix4();
	if ( inheritType === 0 ) {
		lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM ).multiply( lLSM );
	} else if ( inheritType === 1 ) {
		lGlobalRS.copy( lParentGRM ).multiply( lParentGSM ).multiply( lLRM ).multiply( lLSM );
	} else {
		const lParentLSM = new Matrix4().scale( new Vector3().setFromMatrixScale( lParentLX ) );
		const lParentLSM_inv = lParentLSM.clone().invert();
		const lParentGSM_noLocal = lParentGSM.clone().multiply( lParentLSM_inv );
		lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM_noLocal ).multiply( lLSM );
	}
	const lRotationPivotM_inv = lRotationPivotM.clone().invert();
	const lScalingPivotM_inv = lScalingPivotM.clone().invert();
	// Calculate the local transform matrix
	let lTransform = lTranslationM.clone().multiply( lRotationOffsetM ).multiply( lRotationPivotM ).multiply( lPreRotationM ).multiply( lRotationM ).multiply( lPostRotationM ).multiply( lRotationPivotM_inv ).multiply( lScalingOffsetM ).multiply( lScalingPivotM ).multiply( lScalingM ).multiply( lScalingPivotM_inv );
	const lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition( lTransform );
	const lGlobalTranslation = lParentGX.clone().multiply( lLocalTWithAllPivotAndOffsetInfo );
	lGlobalT.copyPosition( lGlobalTranslation );
	lTransform = lGlobalT.clone().multiply( lGlobalRS );
	// from global to local
	lTransform.premultiply( lParentGX.invert() );
	return lTransform;
}
// Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order
// ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html
function getEulerOrder( order ) {
	order = order || 0;
	const enums = [
		'ZYX', // -> XYZ extrinsic
		'YZX', // -> XZY extrinsic
		'XZY', // -> YZX extrinsic
		'ZXY', // -> YXZ extrinsic
		'YXZ', // -> ZXY extrinsic
		'XYZ', // -> ZYX extrinsic
		//'SphericXYZ', // not possible to support
	];
	if ( order === 6 ) {
		console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' );
		return enums[ 0 ];
	}
	return enums[ order ];
}
// Parses comma separated list of numbers and returns them an array.
// Used internally by the TextParser
function parseNumberArray( value ) {
	const array = value.split( ',' ).map( function ( val ) {
		return parseFloat( val );
	} );
	return array;
}
function convertArrayBufferToString( buffer, from, to ) {
	if ( from === undefined ) from = 0;
	if ( to === undefined ) to = buffer.byteLength;
	return new TextDecoder().decode( new Uint8Array( buffer, from, to ) );
}
function append( a, b ) {
	for ( let i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) {
		a[ j ] = b[ i ];
	}
}
function slice( a, b, from, to ) {
	for ( let i = from, j = 0; i < to; i ++, j ++ ) {
		a[ j ] = b[ i ];
	}
	return a;
}
export { FBXLoader };