File: //var/www/aspa/three/addons/loaders/3DMLoader.js
import {
	BufferGeometryLoader,
	CanvasTexture,
	ClampToEdgeWrapping,
	Color,
	DirectionalLight,
	DoubleSide,
	FileLoader,
	LinearFilter,
	Line,
	LineBasicMaterial,
	Loader,
	Matrix4,
	Mesh,
	MeshPhysicalMaterial,
	MeshStandardMaterial,
	Object3D,
	PointLight,
	Points,
	PointsMaterial,
	RectAreaLight,
	RepeatWrapping,
	SpotLight,
	Sprite,
	SpriteMaterial,
	TextureLoader
} from 'three';
import { EXRLoader } from './EXRLoader.js';
const _taskCache = new WeakMap();
class Rhino3dmLoader extends Loader {
	constructor( manager ) {
		super( manager );
		this.libraryPath = '';
		this.libraryPending = null;
		this.libraryBinary = null;
		this.libraryConfig = {};
		this.url = '';
		this.workerLimit = 4;
		this.workerPool = [];
		this.workerNextTaskID = 1;
		this.workerSourceURL = '';
		this.workerConfig = {};
		this.materials = [];
		this.warnings = [];
	}
	setLibraryPath( path ) {
		this.libraryPath = path;
		return this;
	}
	setWorkerLimit( workerLimit ) {
		this.workerLimit = workerLimit;
		return this;
	}
	load( url, onLoad, onProgress, onError ) {
		const loader = new FileLoader( this.manager );
		loader.setPath( this.path );
		loader.setResponseType( 'arraybuffer' );
		loader.setRequestHeader( this.requestHeader );
		this.url = url;
		loader.load( url, ( buffer ) => {
			// Check for an existing task using this buffer. A transferred buffer cannot be transferred
			// again from this thread.
			if ( _taskCache.has( buffer ) ) {
				const cachedTask = _taskCache.get( buffer );
				return cachedTask.promise.then( onLoad ).catch( onError );
			}
			this.decodeObjects( buffer, url )
				.then( result => {
					result.userData.warnings = this.warnings;
					onLoad( result );
				 } )
				.catch( e => onError( e ) );
		}, onProgress, onError );
	}
	debug() {
		console.log( 'Task load: ', this.workerPool.map( ( worker ) => worker._taskLoad ) );
	}
	decodeObjects( buffer, url ) {
		let worker;
		let taskID;
		const taskCost = buffer.byteLength;
		const objectPending = this._getWorker( taskCost )
			.then( ( _worker ) => {
				worker = _worker;
				taskID = this.workerNextTaskID ++;
				return new Promise( ( resolve, reject ) => {
					worker._callbacks[ taskID ] = { resolve, reject };
					worker.postMessage( { type: 'decode', id: taskID, buffer }, [ buffer ] );
					// this.debug();
				} );
			} )
			.then( ( message ) => this._createGeometry( message.data ) )
			.catch( e => {
				throw e;
			} );
		// Remove task from the task list.
		// Note: replaced '.finally()' with '.catch().then()' block - iOS 11 support (#19416)
		objectPending
			.catch( () => true )
			.then( () => {
				if ( worker && taskID ) {
					this._releaseTask( worker, taskID );
					//this.debug();
				}
			} );
		// Cache the task result.
		_taskCache.set( buffer, {
			url: url,
			promise: objectPending
		} );
		return objectPending;
	}
	parse( data, onLoad, onError ) {
		this.decodeObjects( data, '' )
			.then( result => {
				result.userData.warnings = this.warnings;
				onLoad( result );
			} )
			.catch( e => onError( e ) );
	}
	_compareMaterials( material ) {
		const mat = {};
		mat.name = material.name;
		mat.color = {};
		mat.color.r = material.color.r;
		mat.color.g = material.color.g;
		mat.color.b = material.color.b;
		mat.type = material.type;
		mat.vertexColors = material.vertexColors;
		const json = JSON.stringify( mat );
		for ( let i = 0; i < this.materials.length; i ++ ) {
			const m = this.materials[ i ];
			const _mat = {};
			_mat.name = m.name;
			_mat.color = {};
			_mat.color.r = m.color.r;
			_mat.color.g = m.color.g;
			_mat.color.b = m.color.b;
			_mat.type = m.type;
			_mat.vertexColors = m.vertexColors;
			if ( JSON.stringify( _mat ) === json ) {
				return m;
			}
		}
		this.materials.push( material );
		return material;
	}
	_createMaterial( material, renderEnvironment ) {
		if ( material === undefined ) {
			return new MeshStandardMaterial( {
				color: new Color( 1, 1, 1 ),
				metalness: 0.8,
				name: Loader.DEFAULT_MATERIAL_NAME,
				side: DoubleSide
			} );
		}
		//console.log(material)
		const mat = new MeshPhysicalMaterial( {
			color: new Color( material.diffuseColor.r / 255.0, material.diffuseColor.g / 255.0, material.diffuseColor.b / 255.0 ),
			emissive: new Color( material.emissionColor.r, material.emissionColor.g, material.emissionColor.b ),
			flatShading: material.disableLighting,
			ior: material.indexOfRefraction,
			name: material.name,
			reflectivity: material.reflectivity,
			opacity: 1.0 - material.transparency,
			side: DoubleSide,
			specularColor: material.specularColor,
			transparent: material.transparency > 0 ? true : false
		} );
		mat.userData.id = material.id;
		if ( material.pbrSupported ) {
			const pbr = material.pbr;
			mat.anisotropy = pbr.anisotropic;
			mat.anisotropyRotation = pbr.anisotropicRotation;
			mat.color = new Color( pbr.baseColor.r, pbr.baseColor.g, pbr.baseColor.b );
			mat.clearcoat = pbr.clearcoat;
			mat.clearcoatRoughness = pbr.clearcoatRoughness;
			mat.metalness = pbr.metallic;
			mat.transmission = 1 - pbr.opacity;
			mat.roughness = pbr.roughness;
			mat.sheen = pbr.sheen;
			mat.specularIntensity = pbr.specular;
			mat.thickness = pbr.subsurface;
		}
		if ( material.pbrSupported && material.pbr.opacity === 0 && material.transparency === 1 ) {
			//some compromises
			mat.opacity = 0.2;
			mat.transmission = 1.00;
		}
		const textureLoader = new TextureLoader();
		for ( let i = 0; i < material.textures.length; i ++ ) {
			const texture = material.textures[ i ];
			if ( texture.image !== null ) {
				const map = textureLoader.load( texture.image );
				//console.log(texture.type )
				switch ( texture.type ) {
					case 'Bump':
						mat.bumpMap = map;
						break;
					case 'Diffuse':
						mat.map = map;
						break;
					case 'Emap':
						mat.envMap = map;
						break;
					case 'Opacity':
						mat.transmissionMap = map;
						break;
					case 'Transparency':
						mat.alphaMap = map;
						mat.transparent = true;
						break;
					case 'PBR_Alpha':
						mat.alphaMap = map;
						mat.transparent = true;
						break;
					case 'PBR_AmbientOcclusion':
						mat.aoMap = map;
						break;
					case 'PBR_Anisotropic':
						mat.anisotropyMap = map;
						break;
					case 'PBR_BaseColor':
						mat.map = map;
						break;
					case 'PBR_Clearcoat':
						mat.clearcoatMap = map;
						break;
					case 'PBR_ClearcoatBump':
						mat.clearcoatNormalMap = map;
						break;
					case 'PBR_ClearcoatRoughness':
						mat.clearcoatRoughnessMap = map;
						break;
					case 'PBR_Displacement':
						mat.displacementMap = map;
						break;
					case 'PBR_Emission':
						mat.emissiveMap = map;
						break;
					case 'PBR_Metallic':
						mat.metalnessMap = map;
						break;
					case 'PBR_Roughness':
						mat.roughnessMap = map;
						break;
					case 'PBR_Sheen':
						mat.sheenColorMap = map;
						break;
					case 'PBR_Specular':
						mat.specularColorMap = map;
						break;
					case 'PBR_Subsurface':
						mat.thicknessMap = map;
						break;
					default:
						this.warnings.push( {
							message: `THREE.3DMLoader: No conversion exists for 3dm ${texture.type}.`,
							type: 'no conversion'
						} );
						break;
				}
				map.wrapS = texture.wrapU === 0 ? RepeatWrapping : ClampToEdgeWrapping;
				map.wrapT = texture.wrapV === 0 ? RepeatWrapping : ClampToEdgeWrapping;
				if ( texture.repeat ) {
					map.repeat.set( texture.repeat[ 0 ], texture.repeat[ 1 ] );
				}
			}
		}
		if ( renderEnvironment ) {
			new EXRLoader().load( renderEnvironment.image, function ( texture ) {
				texture.mapping = THREE.EquirectangularReflectionMapping;
				mat.envMap = texture;
			} );
		}
		return mat;
	}
	_createGeometry( data ) {
		const object = new Object3D();
		const instanceDefinitionObjects = [];
		const instanceDefinitions = [];
		const instanceReferences = [];
		object.userData[ 'layers' ] = data.layers;
		object.userData[ 'groups' ] = data.groups;
		object.userData[ 'settings' ] = data.settings;
		object.userData.settings[ 'renderSettings' ] = data.renderSettings;
		object.userData[ 'objectType' ] = 'File3dm';
		object.userData[ 'materials' ] = null;
		object.name = this.url;
		let objects = data.objects;
		const materials = data.materials;
		for ( let i = 0; i < objects.length; i ++ ) {
			const obj = objects[ i ];
			const attributes = obj.attributes;
			switch ( obj.objectType ) {
				case 'InstanceDefinition':
					instanceDefinitions.push( obj );
					break;
				case 'InstanceReference':
					instanceReferences.push( obj );
					break;
				default:
					let matId = null;
					switch ( attributes.materialSource.name ) {
						case 'ObjectMaterialSource_MaterialFromLayer':
							//check layer index
							if ( attributes.layerIndex >= 0 ) {
								matId = data.layers[ attributes.layerIndex ].renderMaterialIndex;
							}
							break;
						case 'ObjectMaterialSource_MaterialFromObject':
							if ( attributes.materialIndex >= 0 ) {
								matId = attributes.materialIndex;
							}
							break;
					}
					let material = null;
					if ( matId >= 0 ) {
						const rMaterial = materials[ matId ];
						material = this._createMaterial( rMaterial, data.renderEnvironment );
					}
					const _object = this._createObject( obj, material );
					if ( _object === undefined ) {
						continue;
					}
					const layer = data.layers[ attributes.layerIndex ];
					_object.visible = layer ? data.layers[ attributes.layerIndex ].visible : true;
					if ( attributes.isInstanceDefinitionObject ) {
						instanceDefinitionObjects.push( _object );
					} else {
						object.add( _object );
					}
					break;
			}
		}
		for ( let i = 0; i < instanceDefinitions.length; i ++ ) {
			const iDef = instanceDefinitions[ i ];
			objects = [];
			for ( let j = 0; j < iDef.attributes.objectIds.length; j ++ ) {
				const objId = iDef.attributes.objectIds[ j ];
				for ( let p = 0; p < instanceDefinitionObjects.length; p ++ ) {
					const idoId = instanceDefinitionObjects[ p ].userData.attributes.id;
					if ( objId === idoId ) {
						objects.push( instanceDefinitionObjects[ p ] );
					}
				}
			}
			// Currently clones geometry and does not take advantage of instancing
			for ( let j = 0; j < instanceReferences.length; j ++ ) {
				const iRef = instanceReferences[ j ];
				if ( iRef.geometry.parentIdefId === iDef.attributes.id ) {
					const iRefObject = new Object3D();
					const xf = iRef.geometry.xform.array;
					const matrix = new Matrix4();
					matrix.set( ...xf );
					iRefObject.applyMatrix4( matrix );
					for ( let p = 0; p < objects.length; p ++ ) {
						iRefObject.add( objects[ p ].clone( true ) );
					}
					object.add( iRefObject );
				}
			}
		}
		object.userData[ 'materials' ] = this.materials;
		object.name = '';
		return object;
	}
	_createObject( obj, mat ) {
		const loader = new BufferGeometryLoader();
		const attributes = obj.attributes;
		let geometry, material, _color, color;
		switch ( obj.objectType ) {
			case 'Point':
			case 'PointSet':
				geometry = loader.parse( obj.geometry );
				if ( geometry.attributes.hasOwnProperty( 'color' ) ) {
					material = new PointsMaterial( { vertexColors: true, sizeAttenuation: false, size: 2 } );
				} else {
					_color = attributes.drawColor;
					color = new Color( _color.r / 255.0, _color.g / 255.0, _color.b / 255.0 );
					material = new PointsMaterial( { color: color, sizeAttenuation: false, size: 2 } );
				}
				material = this._compareMaterials( material );
				const points = new Points( geometry, material );
				points.userData[ 'attributes' ] = attributes;
				points.userData[ 'objectType' ] = obj.objectType;
				if ( attributes.name ) {
					points.name = attributes.name;
				}
				return points;
			case 'Mesh':
			case 'Extrusion':
			case 'SubD':
			case 'Brep':
				if ( obj.geometry === null ) return;
				geometry = loader.parse( obj.geometry );
				if ( mat === null ) {
					mat = this._createMaterial();
				}
				if ( geometry.attributes.hasOwnProperty( 'color' ) ) {
					mat.vertexColors = true;
				}
				mat = this._compareMaterials( mat );
				const mesh = new Mesh( geometry, mat );
				mesh.castShadow = attributes.castsShadows;
				mesh.receiveShadow = attributes.receivesShadows;
				mesh.userData[ 'attributes' ] = attributes;
				mesh.userData[ 'objectType' ] = obj.objectType;
				if ( attributes.name ) {
					mesh.name = attributes.name;
				}
				return mesh;
			case 'Curve':
				geometry = loader.parse( obj.geometry );
				_color = attributes.drawColor;
				color = new Color( _color.r / 255.0, _color.g / 255.0, _color.b / 255.0 );
				material = new LineBasicMaterial( { color: color } );
				material = this._compareMaterials( material );
				const lines = new Line( geometry, material );
				lines.userData[ 'attributes' ] = attributes;
				lines.userData[ 'objectType' ] = obj.objectType;
				if ( attributes.name ) {
					lines.name = attributes.name;
				}
				return lines;
			case 'TextDot':
				geometry = obj.geometry;
				const ctx = document.createElement( 'canvas' ).getContext( '2d' );
				const font = `${geometry.fontHeight}px ${geometry.fontFace}`;
				ctx.font = font;
				const width = ctx.measureText( geometry.text ).width + 10;
				const height = geometry.fontHeight + 10;
				const r = window.devicePixelRatio;
				ctx.canvas.width = width * r;
				ctx.canvas.height = height * r;
				ctx.canvas.style.width = width + 'px';
				ctx.canvas.style.height = height + 'px';
				ctx.setTransform( r, 0, 0, r, 0, 0 );
				ctx.font = font;
				ctx.textBaseline = 'middle';
				ctx.textAlign = 'center';
				color = attributes.drawColor;
				ctx.fillStyle = `rgba(${color.r},${color.g},${color.b},${color.a})`;
				ctx.fillRect( 0, 0, width, height );
				ctx.fillStyle = 'white';
				ctx.fillText( geometry.text, width / 2, height / 2 );
				const texture = new CanvasTexture( ctx.canvas );
				texture.minFilter = LinearFilter;
				texture.wrapS = ClampToEdgeWrapping;
				texture.wrapT = ClampToEdgeWrapping;
				material = new SpriteMaterial( { map: texture, depthTest: false } );
				const sprite = new Sprite( material );
				sprite.position.set( geometry.point[ 0 ], geometry.point[ 1 ], geometry.point[ 2 ] );
				sprite.scale.set( width / 10, height / 10, 1.0 );
				sprite.userData[ 'attributes' ] = attributes;
				sprite.userData[ 'objectType' ] = obj.objectType;
				if ( attributes.name ) {
					sprite.name = attributes.name;
				}
				return sprite;
			case 'Light':
				geometry = obj.geometry;
				let light;
				switch ( geometry.lightStyle.name ) {
					case 'LightStyle_WorldPoint':
						light = new PointLight();
						light.castShadow = attributes.castsShadows;
						light.position.set( geometry.location[ 0 ], geometry.location[ 1 ], geometry.location[ 2 ] );
						light.shadow.normalBias = 0.1;
						break;
					case 'LightStyle_WorldSpot':
						light = new SpotLight();
						light.castShadow = attributes.castsShadows;
						light.position.set( geometry.location[ 0 ], geometry.location[ 1 ], geometry.location[ 2 ] );
						light.target.position.set( geometry.direction[ 0 ], geometry.direction[ 1 ], geometry.direction[ 2 ] );
						light.angle = geometry.spotAngleRadians;
						light.shadow.normalBias = 0.1;
						break;
					case 'LightStyle_WorldRectangular':
						light = new RectAreaLight();
						const width = Math.abs( geometry.width[ 2 ] );
						const height = Math.abs( geometry.length[ 0 ] );
						light.position.set( geometry.location[ 0 ] - ( height / 2 ), geometry.location[ 1 ], geometry.location[ 2 ] - ( width / 2 ) );
						light.height = height;
						light.width = width;
						light.lookAt( geometry.direction[ 0 ], geometry.direction[ 1 ], geometry.direction[ 2 ] );
						break;
					case 'LightStyle_WorldDirectional':
						light = new DirectionalLight();
						light.castShadow = attributes.castsShadows;
						light.position.set( geometry.location[ 0 ], geometry.location[ 1 ], geometry.location[ 2 ] );
						light.target.position.set( geometry.direction[ 0 ], geometry.direction[ 1 ], geometry.direction[ 2 ] );
						light.shadow.normalBias = 0.1;
						break;
					case 'LightStyle_WorldLinear':
						// no conversion exists, warning has already been printed to the console
						break;
					default:
						break;
				}
				if ( light ) {
					light.intensity = geometry.intensity;
					_color = geometry.diffuse;
					color = new Color( _color.r / 255.0, _color.g / 255.0, _color.b / 255.0 );
					light.color = color;
					light.userData[ 'attributes' ] = attributes;
					light.userData[ 'objectType' ] = obj.objectType;
				}
				return light;
		}
	}
	_initLibrary() {
		if ( ! this.libraryPending ) {
			// Load rhino3dm wrapper.
			const jsLoader = new FileLoader( this.manager );
			jsLoader.setPath( this.libraryPath );
			const jsContent = new Promise( ( resolve, reject ) => {
				jsLoader.load( 'rhino3dm.js', resolve, undefined, reject );
			} );
			// Load rhino3dm WASM binary.
			const binaryLoader = new FileLoader( this.manager );
			binaryLoader.setPath( this.libraryPath );
			binaryLoader.setResponseType( 'arraybuffer' );
			const binaryContent = new Promise( ( resolve, reject ) => {
				binaryLoader.load( 'rhino3dm.wasm', resolve, undefined, reject );
			} );
			this.libraryPending = Promise.all( [ jsContent, binaryContent ] )
				.then( ( [ jsContent, binaryContent ] ) => {
					//this.libraryBinary = binaryContent;
					this.libraryConfig.wasmBinary = binaryContent;
					const fn = Rhino3dmWorker.toString();
					const body = [
						'/* rhino3dm.js */',
						jsContent,
						'/* worker */',
						fn.substring( fn.indexOf( '{' ) + 1, fn.lastIndexOf( '}' ) )
					].join( '\n' );
					this.workerSourceURL = URL.createObjectURL( new Blob( [ body ] ) );
				} );
		}
		return this.libraryPending;
	}
	_getWorker( taskCost ) {
		return this._initLibrary().then( () => {
			if ( this.workerPool.length < this.workerLimit ) {
				const worker = new Worker( this.workerSourceURL );
				worker._callbacks = {};
				worker._taskCosts = {};
				worker._taskLoad = 0;
				worker.postMessage( {
					type: 'init',
					libraryConfig: this.libraryConfig
				} );
				worker.onmessage = e => {
					const message = e.data;
					switch ( message.type ) {
						case 'warning':
							this.warnings.push( message.data );
							console.warn( message.data );
							break;
						case 'decode':
							worker._callbacks[ message.id ].resolve( message );
							break;
						case 'error':
							worker._callbacks[ message.id ].reject( message );
							break;
						default:
							console.error( 'THREE.Rhino3dmLoader: Unexpected message, "' + message.type + '"' );
					}
				};
				this.workerPool.push( worker );
			} else {
				this.workerPool.sort( function ( a, b ) {
					return a._taskLoad > b._taskLoad ? - 1 : 1;
				} );
			}
			const worker = this.workerPool[ this.workerPool.length - 1 ];
			worker._taskLoad += taskCost;
			return worker;
		} );
	}
	_releaseTask( worker, taskID ) {
		worker._taskLoad -= worker._taskCosts[ taskID ];
		delete worker._callbacks[ taskID ];
		delete worker._taskCosts[ taskID ];
	}
	dispose() {
		for ( let i = 0; i < this.workerPool.length; ++ i ) {
			this.workerPool[ i ].terminate();
		}
		this.workerPool.length = 0;
		return this;
	}
}
/* WEB WORKER */
function Rhino3dmWorker() {
	let libraryPending;
	let libraryConfig;
	let rhino;
	let taskID;
	onmessage = function ( e ) {
		const message = e.data;
		switch ( message.type ) {
			case 'init':
				libraryConfig = message.libraryConfig;
				const wasmBinary = libraryConfig.wasmBinary;
				let RhinoModule;
				libraryPending = new Promise( function ( resolve ) {
					/* Like Basis Loader */
					RhinoModule = { wasmBinary, onRuntimeInitialized: resolve };
					rhino3dm( RhinoModule ); // eslint-disable-line no-undef
				 } ).then( () => {
					rhino = RhinoModule;
				 } );
				break;
			case 'decode':
				taskID = message.id;
				const buffer = message.buffer;
				libraryPending.then( () => {
					try {
						const data = decodeObjects( rhino, buffer );
						self.postMessage( { type: 'decode', id: message.id, data } );
					} catch ( error ) {
						self.postMessage( { type: 'error', id: message.id, error } );
					}
				} );
				break;
		}
	};
	function decodeObjects( rhino, buffer ) {
		const arr = new Uint8Array( buffer );
		const doc = rhino.File3dm.fromByteArray( arr );
		const objects = [];
		const materials = [];
		const layers = [];
		const views = [];
		const namedViews = [];
		const groups = [];
		const strings = [];
		//Handle objects
		const objs = doc.objects();
		const cnt = objs.count;
		for ( let i = 0; i < cnt; i ++ ) {
			const _object = objs.get( i );
			const object = extractObjectData( _object, doc );
			_object.delete();
			if ( object ) {
				objects.push( object );
			}
		}
		// Handle instance definitions
		// console.log( `Instance Definitions Count: ${doc.instanceDefinitions().count()}` );
		for ( let i = 0; i < doc.instanceDefinitions().count; i ++ ) {
			const idef = doc.instanceDefinitions().get( i );
			const idefAttributes = extractProperties( idef );
			idefAttributes.objectIds = idef.getObjectIds();
			objects.push( { geometry: null, attributes: idefAttributes, objectType: 'InstanceDefinition' } );
		}
		// Handle materials
		const textureTypes = [
			// rhino.TextureType.Bitmap,
			rhino.TextureType.Diffuse,
			rhino.TextureType.Bump,
			rhino.TextureType.Transparency,
			rhino.TextureType.Opacity,
			rhino.TextureType.Emap
		];
		const pbrTextureTypes = [
			rhino.TextureType.PBR_BaseColor,
			rhino.TextureType.PBR_Subsurface,
			rhino.TextureType.PBR_SubsurfaceScattering,
			rhino.TextureType.PBR_SubsurfaceScatteringRadius,
			rhino.TextureType.PBR_Metallic,
			rhino.TextureType.PBR_Specular,
			rhino.TextureType.PBR_SpecularTint,
			rhino.TextureType.PBR_Roughness,
			rhino.TextureType.PBR_Anisotropic,
			rhino.TextureType.PBR_Anisotropic_Rotation,
			rhino.TextureType.PBR_Sheen,
			rhino.TextureType.PBR_SheenTint,
			rhino.TextureType.PBR_Clearcoat,
			rhino.TextureType.PBR_ClearcoatBump,
			rhino.TextureType.PBR_ClearcoatRoughness,
			rhino.TextureType.PBR_OpacityIor,
			rhino.TextureType.PBR_OpacityRoughness,
			rhino.TextureType.PBR_Emission,
			rhino.TextureType.PBR_AmbientOcclusion,
			rhino.TextureType.PBR_Displacement
		];
		for ( let i = 0; i < doc.materials().count; i ++ ) {
			const _material = doc.materials().get( i );
			const material = extractProperties( _material );
			const textures = [];
			textures.push( ...extractTextures( _material, textureTypes, doc ) );
			material.pbrSupported = _material.physicallyBased().supported;
			if ( material.pbrSupported ) {
				textures.push( ...extractTextures( _material, pbrTextureTypes, doc ) );
				material.pbr = extractProperties( _material.physicallyBased() );
			}
			material.textures = textures;
			materials.push( material );
			_material.delete();
		}
		// Handle layers
		for ( let i = 0; i < doc.layers().count; i ++ ) {
			const _layer = doc.layers().get( i );
			const layer = extractProperties( _layer );
			layers.push( layer );
			_layer.delete();
		}
		// Handle views
		for ( let i = 0; i < doc.views().count; i ++ ) {
			const _view = doc.views().get( i );
			const view = extractProperties( _view );
			views.push( view );
			_view.delete();
		}
		// Handle named views
		for ( let i = 0; i < doc.namedViews().count; i ++ ) {
			const _namedView = doc.namedViews().get( i );
			const namedView = extractProperties( _namedView );
			namedViews.push( namedView );
			_namedView.delete();
		}
		// Handle groups
		for ( let i = 0; i < doc.groups().count; i ++ ) {
			const _group = doc.groups().get( i );
			const group = extractProperties( _group );
			groups.push( group );
			_group.delete();
		}
		// Handle settings
		const settings = extractProperties( doc.settings() );
		//TODO: Handle other document stuff like dimstyles, instance definitions, bitmaps etc.
		// Handle dimstyles
		// console.log( `Dimstyle Count: ${doc.dimstyles().count()}` );
		// Handle bitmaps
		// console.log( `Bitmap Count: ${doc.bitmaps().count()}` );
		// Handle strings
		// console.log( `Document Strings Count: ${doc.strings().count()}` );
		// Note: doc.strings().documentUserTextCount() counts any doc.strings defined in a section
		// console.log( `Document User Text Count: ${doc.strings().documentUserTextCount()}` );
		const strings_count = doc.strings().count;
		for ( let i = 0; i < strings_count; i ++ ) {
			strings.push( doc.strings().get( i ) );
		}
		// Handle Render Environments for Material Environment
		// get the id of the active render environment skylight, which we'll use for environment texture
		const reflectionId = doc.settings().renderSettings().renderEnvironments.reflectionId;
		const rc = doc.renderContent();
		let renderEnvironment = null;
		for ( let i = 0; i < rc.count; i ++ ) {
			const content = rc.get( i );
			switch ( content.kind ) {
				case 'environment':
					const id = content.id;
					// there could be multiple render environments in a 3dm file
					if ( id !== reflectionId ) break;
					const renderTexture = content.findChild( 'texture' );
					const fileName = renderTexture.fileName;
					for ( let j = 0; j < doc.embeddedFiles().count; j ++ ) {
						const _fileName = doc.embeddedFiles().get( j ).fileName;
						if ( fileName === _fileName ) {
							const background = doc.getEmbeddedFileAsBase64( fileName );
							const backgroundImage = 'data:image/png;base64,' + background;
							renderEnvironment = { type: 'renderEnvironment', image: backgroundImage, name: fileName };
						}
					}
					break;
			}
		}
		// Handle Render Settings
		const renderSettings = {
			ambientLight: doc.settings().renderSettings().ambientLight,
			backgroundColorTop: doc.settings().renderSettings().backgroundColorTop,
			backgroundColorBottom: doc.settings().renderSettings().backgroundColorBottom,
			useHiddenLights: doc.settings().renderSettings().useHiddenLights,
			depthCue: doc.settings().renderSettings().depthCue,
			flatShade: doc.settings().renderSettings().flatShade,
			renderBackFaces: doc.settings().renderSettings().renderBackFaces,
			renderPoints: doc.settings().renderSettings().renderPoints,
			renderCurves: doc.settings().renderSettings().renderCurves,
			renderIsoParams: doc.settings().renderSettings().renderIsoParams,
			renderMeshEdges: doc.settings().renderSettings().renderMeshEdges,
			renderAnnotations: doc.settings().renderSettings().renderAnnotations,
			useViewportSize: doc.settings().renderSettings().useViewportSize,
			scaleBackgroundToFit: doc.settings().renderSettings().scaleBackgroundToFit,
			transparentBackground: doc.settings().renderSettings().transparentBackground,
			imageDpi: doc.settings().renderSettings().imageDpi,
			shadowMapLevel: doc.settings().renderSettings().shadowMapLevel,
			namedView: doc.settings().renderSettings().namedView,
			snapShot: doc.settings().renderSettings().snapShot,
			specificViewport: doc.settings().renderSettings().specificViewport,
			groundPlane: extractProperties( doc.settings().renderSettings().groundPlane ),
			safeFrame: extractProperties( doc.settings().renderSettings().safeFrame ),
			dithering: extractProperties( doc.settings().renderSettings().dithering ),
			skylight: extractProperties( doc.settings().renderSettings().skylight ),
			linearWorkflow: extractProperties( doc.settings().renderSettings().linearWorkflow ),
			renderChannels: extractProperties( doc.settings().renderSettings().renderChannels ),
			sun: extractProperties( doc.settings().renderSettings().sun ),
			renderEnvironments: extractProperties( doc.settings().renderSettings().renderEnvironments ),
			postEffects: extractProperties( doc.settings().renderSettings().postEffects ),
		};
		doc.delete();
		return { objects, materials, layers, views, namedViews, groups, strings, settings, renderSettings, renderEnvironment };
	}
	function extractTextures( m, tTypes, d ) {
		const textures = [];
		for ( let i = 0; i < tTypes.length; i ++ ) {
			const _texture = m.getTexture( tTypes[ i ] );
			if ( _texture ) {
				let textureType = tTypes[ i ].constructor.name;
				textureType = textureType.substring( 12, textureType.length );
				const texture = extractTextureData( _texture, textureType, d );
				textures.push( texture );
				_texture.delete();
			}
		}
		return textures;
	}
	function extractTextureData( t, tType, d ) {
		const texture = { type: tType };
		const image = d.getEmbeddedFileAsBase64( t.fileName );
		texture.wrapU = t.wrapU;
		texture.wrapV = t.wrapV;
		texture.wrapW = t.wrapW;
		const uvw = t.uvwTransform.toFloatArray( true );
		texture.repeat = [ uvw[ 0 ], uvw[ 5 ] ];
		if ( image ) {
			texture.image = 'data:image/png;base64,' + image;
		} else {
			self.postMessage( { type: 'warning', id: taskID, data: {
				message: `THREE.3DMLoader: Image for ${tType} texture not embedded in file.`,
				type: 'missing resource'
			}
			} );
			texture.image = null;
		}
		return texture;
	}
	function extractObjectData( object, doc ) {
		const _geometry = object.geometry();
		const _attributes = object.attributes();
		let objectType = _geometry.objectType;
		let geometry, attributes, position, data, mesh;
		// skip instance definition objects
		//if( _attributes.isInstanceDefinitionObject ) { continue; }
		// TODO: handle other geometry types
		switch ( objectType ) {
			case rhino.ObjectType.Curve:
				const pts = curveToPoints( _geometry, 100 );
				position = {};
				attributes = {};
				data = {};
				position.itemSize = 3;
				position.type = 'Float32Array';
				position.array = [];
				for ( let j = 0; j < pts.length; j ++ ) {
					position.array.push( pts[ j ][ 0 ] );
					position.array.push( pts[ j ][ 1 ] );
					position.array.push( pts[ j ][ 2 ] );
				}
				attributes.position = position;
				data.attributes = attributes;
				geometry = { data };
				break;
			case rhino.ObjectType.Point:
				const pt = _geometry.location;
				position = {};
				const color = {};
				attributes = {};
				data = {};
				position.itemSize = 3;
				position.type = 'Float32Array';
				position.array = [ pt[ 0 ], pt[ 1 ], pt[ 2 ] ];
				const _color = _attributes.drawColor( doc );
				color.itemSize = 3;
				color.type = 'Float32Array';
				color.array = [ _color.r / 255.0, _color.g / 255.0, _color.b / 255.0 ];
				attributes.position = position;
				attributes.color = color;
				data.attributes = attributes;
				geometry = { data };
				break;
			case rhino.ObjectType.PointSet:
			case rhino.ObjectType.Mesh:
				geometry = _geometry.toThreejsJSON();
				break;
			case rhino.ObjectType.Brep:
				const faces = _geometry.faces();
				mesh = new rhino.Mesh();
				for ( let faceIndex = 0; faceIndex < faces.count; faceIndex ++ ) {
					const face = faces.get( faceIndex );
					const _mesh = face.getMesh( rhino.MeshType.Any );
					if ( _mesh ) {
						mesh.append( _mesh );
						_mesh.delete();
					}
					face.delete();
				}
				if ( mesh.faces().count > 0 ) {
					mesh.compact();
					geometry = mesh.toThreejsJSON();
					faces.delete();
				}
				mesh.delete();
				break;
			case rhino.ObjectType.Extrusion:
				mesh = _geometry.getMesh( rhino.MeshType.Any );
				if ( mesh ) {
					geometry = mesh.toThreejsJSON();
					mesh.delete();
				}
				break;
			case rhino.ObjectType.TextDot:
				geometry = extractProperties( _geometry );
				break;
			case rhino.ObjectType.Light:
				geometry = extractProperties( _geometry );
				if ( geometry.lightStyle.name === 'LightStyle_WorldLinear' ) {
					self.postMessage( { type: 'warning', id: taskID, data: {
						message: `THREE.3DMLoader: No conversion exists for ${objectType.constructor.name} ${geometry.lightStyle.name}`,
						type: 'no conversion',
						guid: _attributes.id
					}
					} );
				}
				break;
			case rhino.ObjectType.InstanceReference:
				geometry = extractProperties( _geometry );
				geometry.xform = extractProperties( _geometry.xform );
				geometry.xform.array = _geometry.xform.toFloatArray( true );
				break;
			case rhino.ObjectType.SubD:
				// TODO: precalculate resulting vertices and faces and warn on excessive results
				_geometry.subdivide( 3 );
				mesh = rhino.Mesh.createFromSubDControlNet( _geometry, false );
				if ( mesh ) {
					geometry = mesh.toThreejsJSON();
					mesh.delete();
				}
				break;
				/*
				case rhino.ObjectType.Annotation:
				case rhino.ObjectType.Hatch:
				case rhino.ObjectType.ClipPlane:
				*/
			default:
				self.postMessage( { type: 'warning', id: taskID, data: {
					message: `THREE.3DMLoader: Conversion not implemented for ${objectType.constructor.name}`,
					type: 'not implemented',
					guid: _attributes.id
				}
				} );
				break;
		}
		if ( geometry ) {
			attributes = extractProperties( _attributes );
			attributes.geometry = extractProperties( _geometry );
			if ( _attributes.groupCount > 0 ) {
				attributes.groupIds = _attributes.getGroupList();
			}
			if ( _attributes.userStringCount > 0 ) {
				attributes.userStrings = _attributes.getUserStrings();
			}
			if ( _geometry.userStringCount > 0 ) {
				attributes.geometry.userStrings = _geometry.getUserStrings();
			}
			if ( _attributes.decals().count > 0 ) {
				self.postMessage( { type: 'warning', id: taskID, data: {
					message: 'THREE.3DMLoader: No conversion exists for the decals associated with this object.',
					type: 'no conversion',
					guid: _attributes.id
				}
				} );
			}
			attributes.drawColor = _attributes.drawColor( doc );
			objectType = objectType.constructor.name;
			objectType = objectType.substring( 11, objectType.length );
			return { geometry, attributes, objectType };
		} else {
			self.postMessage( { type: 'warning', id: taskID, data: {
				message: `THREE.3DMLoader: ${objectType.constructor.name} has no associated mesh geometry.`,
				type: 'missing mesh',
				guid: _attributes.id
			}
			} );
		}
	}
	function extractProperties( object ) {
		const result = {};
		for ( const property in object ) {
			const value = object[ property ];
			if ( typeof value !== 'function' ) {
				if ( typeof value === 'object' && value !== null && value.hasOwnProperty( 'constructor' ) ) {
					result[ property ] = { name: value.constructor.name, value: value.value };
				} else if ( typeof value === 'object' && value !== null ) {
					result[ property ] = extractProperties( value );
				} else {
					result[ property ] = value;
				}
			} else {
				// these are functions that could be called to extract more data.
				//console.log( `${property}: ${object[ property ].constructor.name}` );
			}
		}
		return result;
	}
	function curveToPoints( curve, pointLimit ) {
		let pointCount = pointLimit;
		let rc = [];
		const ts = [];
		if ( curve instanceof rhino.LineCurve ) {
			return [ curve.pointAtStart, curve.pointAtEnd ];
		}
		if ( curve instanceof rhino.PolylineCurve ) {
			pointCount = curve.pointCount;
			for ( let i = 0; i < pointCount; i ++ ) {
				rc.push( curve.point( i ) );
			}
			return rc;
		}
		if ( curve instanceof rhino.PolyCurve ) {
			const segmentCount = curve.segmentCount;
			for ( let i = 0; i < segmentCount; i ++ ) {
				const segment = curve.segmentCurve( i );
				const segmentArray = curveToPoints( segment, pointCount );
				rc = rc.concat( segmentArray );
				segment.delete();
			}
			return rc;
		}
		if ( curve instanceof rhino.ArcCurve ) {
			pointCount = Math.floor( curve.angleDegrees / 5 );
			pointCount = pointCount < 2 ? 2 : pointCount;
			// alternative to this hardcoded version: https://stackoverflow.com/a/18499923/2179399
		}
		if ( curve instanceof rhino.NurbsCurve && curve.degree === 1 ) {
			const pLine = curve.tryGetPolyline();
			for ( let i = 0; i < pLine.count; i ++ ) {
				rc.push( pLine.get( i ) );
			}
			pLine.delete();
			return rc;
		}
		const domain = curve.domain;
		const divisions = pointCount - 1.0;
		for ( let j = 0; j < pointCount; j ++ ) {
			const t = domain[ 0 ] + ( j / divisions ) * ( domain[ 1 ] - domain[ 0 ] );
			if ( t === domain[ 0 ] || t === domain[ 1 ] ) {
				ts.push( t );
				continue;
			}
			const tan = curve.tangentAt( t );
			const prevTan = curve.tangentAt( ts.slice( - 1 )[ 0 ] );
			// Duplicated from THREE.Vector3
			// How to pass imports to worker?
			const tS = tan[ 0 ] * tan[ 0 ] + tan[ 1 ] * tan[ 1 ] + tan[ 2 ] * tan[ 2 ];
			const ptS = prevTan[ 0 ] * prevTan[ 0 ] + prevTan[ 1 ] * prevTan[ 1 ] + prevTan[ 2 ] * prevTan[ 2 ];
			const denominator = Math.sqrt( tS * ptS );
			let angle;
			if ( denominator === 0 ) {
				angle = Math.PI / 2;
			} else {
				const theta = ( tan.x * prevTan.x + tan.y * prevTan.y + tan.z * prevTan.z ) / denominator;
				angle = Math.acos( Math.max( - 1, Math.min( 1, theta ) ) );
			}
			if ( angle < 0.1 ) continue;
			ts.push( t );
		}
		rc = ts.map( t => curve.pointAt( t ) );
		return rc;
	}
}
export { Rhino3dmLoader };