File: //var/www/aspa/three/addons/lights/LightProbeGenerator.js
import {
	Color,
	LightProbe,
	LinearSRGBColorSpace,
	SphericalHarmonics3,
	Vector3,
	SRGBColorSpace,
	NoColorSpace,
	HalfFloatType,
	DataUtils
} from 'three';
class LightProbeGenerator {
	// https://www.ppsloan.org/publications/StupidSH36.pdf
	static fromCubeTexture( cubeTexture ) {
		let totalWeight = 0;
		const coord = new Vector3();
		const dir = new Vector3();
		const color = new Color();
		const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
		const sh = new SphericalHarmonics3();
		const shCoefficients = sh.coefficients;
		for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
			const image = cubeTexture.image[ faceIndex ];
			const width = image.width;
			const height = image.height;
			const canvas = document.createElement( 'canvas' );
			canvas.width = width;
			canvas.height = height;
			const context = canvas.getContext( '2d' );
			context.drawImage( image, 0, 0, width, height );
			const imageData = context.getImageData( 0, 0, width, height );
			const data = imageData.data;
			const imageWidth = imageData.width; // assumed to be square
			const pixelSize = 2 / imageWidth;
			for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
				// pixel color
				color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );
				// convert to linear color space
				convertColorToLinear( color, cubeTexture.colorSpace );
				// pixel coordinate on unit cube
				const pixelIndex = i / 4;
				const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
				const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
				switch ( faceIndex ) {
					case 0: coord.set( - 1, row, - col ); break;
					case 1: coord.set( 1, row, col ); break;
					case 2: coord.set( - col, 1, - row ); break;
					case 3: coord.set( - col, - 1, row ); break;
					case 4: coord.set( - col, row, 1 ); break;
					case 5: coord.set( col, row, - 1 ); break;
				}
				// weight assigned to this pixel
				const lengthSq = coord.lengthSq();
				const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
				totalWeight += weight;
				// direction vector to this pixel
				dir.copy( coord ).normalize();
				// evaluate SH basis functions in direction dir
				SphericalHarmonics3.getBasisAt( dir, shBasis );
				// accummuulate
				for ( let j = 0; j < 9; j ++ ) {
					shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
					shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
					shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
				}
			}
		}
		// normalize
		const norm = ( 4 * Math.PI ) / totalWeight;
		for ( let j = 0; j < 9; j ++ ) {
			shCoefficients[ j ].x *= norm;
			shCoefficients[ j ].y *= norm;
			shCoefficients[ j ].z *= norm;
		}
		return new LightProbe( sh );
	}
	static fromCubeRenderTarget( renderer, cubeRenderTarget ) {
		// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works
		let totalWeight = 0;
		const coord = new Vector3();
		const dir = new Vector3();
		const color = new Color();
		const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
		const sh = new SphericalHarmonics3();
		const shCoefficients = sh.coefficients;
		const dataType = cubeRenderTarget.texture.type;
		for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
			const imageWidth = cubeRenderTarget.width; // assumed to be square
			let data;
			if ( dataType === HalfFloatType ) {
				data = new Uint16Array( imageWidth * imageWidth * 4 );
			} else {
				// assuming UnsignedByteType
				data = new Uint8Array( imageWidth * imageWidth * 4 );
			}
			renderer.readRenderTargetPixels( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );
			const pixelSize = 2 / imageWidth;
			for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
				let r, g, b;
				if ( dataType === HalfFloatType ) {
					r = DataUtils.fromHalfFloat( data[ i ] );
					g = DataUtils.fromHalfFloat( data[ i + 1 ] );
					b = DataUtils.fromHalfFloat( data[ i + 2 ] );
				} else {
					r = data[ i ] / 255;
					g = data[ i + 1 ] / 255;
					b = data[ i + 2 ] / 255;
				}
				// pixel color
				color.setRGB( r, g, b );
				// convert to linear color space
				convertColorToLinear( color, cubeRenderTarget.texture.colorSpace );
				// pixel coordinate on unit cube
				const pixelIndex = i / 4;
				const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
				const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
				switch ( faceIndex ) {
					case 0: coord.set( 1, row, - col ); break;
					case 1: coord.set( - 1, row, col ); break;
					case 2: coord.set( col, 1, - row ); break;
					case 3: coord.set( col, - 1, row ); break;
					case 4: coord.set( col, row, 1 ); break;
					case 5: coord.set( - col, row, - 1 ); break;
				}
				// weight assigned to this pixel
				const lengthSq = coord.lengthSq();
				const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
				totalWeight += weight;
				// direction vector to this pixel
				dir.copy( coord ).normalize();
				// evaluate SH basis functions in direction dir
				SphericalHarmonics3.getBasisAt( dir, shBasis );
				// accummuulate
				for ( let j = 0; j < 9; j ++ ) {
					shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
					shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
					shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
				}
			}
		}
		// normalize
		const norm = ( 4 * Math.PI ) / totalWeight;
		for ( let j = 0; j < 9; j ++ ) {
			shCoefficients[ j ].x *= norm;
			shCoefficients[ j ].y *= norm;
			shCoefficients[ j ].z *= norm;
		}
		return new LightProbe( sh );
	}
}
function convertColorToLinear( color, colorSpace ) {
	switch ( colorSpace ) {
		case SRGBColorSpace:
			color.convertSRGBToLinear();
			break;
		case LinearSRGBColorSpace:
		case NoColorSpace:
			break;
		default:
			console.warn( 'WARNING: LightProbeGenerator convertColorToLinear() encountered an unsupported color space.' );
			break;
	}
	return color;
}
export { LightProbeGenerator };