File: //var/www/aspa/three/addons/exporters/PLYExporter.js
import {
	Matrix3,
	Vector3,
	Color
} from 'three';
/**
 * https://github.com/gkjohnson/ply-exporter-js
 *
 * Usage:
 *  const exporter = new PLYExporter();
 *
 *  // second argument is a list of options
 *  exporter.parse(mesh, data => console.log(data), { binary: true, excludeAttributes: [ 'color' ], littleEndian: true });
 *
 * Format Definition:
 * http://paulbourke.net/dataformats/ply/
 */
class PLYExporter {
	parse( object, onDone, options = {} ) {
		// Iterate over the valid meshes in the object
		function traverseMeshes( cb ) {
			object.traverse( function ( child ) {
				if ( child.isMesh === true || child.isPoints ) {
					const mesh = child;
					const geometry = mesh.geometry;
					if ( geometry.hasAttribute( 'position' ) === true ) {
						cb( mesh, geometry );
					}
				}
			} );
		}
		// Default options
		const defaultOptions = {
			binary: false,
			excludeAttributes: [], // normal, uv, color, index
			littleEndian: false
		};
		options = Object.assign( defaultOptions, options );
		const excludeAttributes = options.excludeAttributes;
		let includeIndices = true;
		let includeNormals = false;
		let includeColors = false;
		let includeUVs = false;
		// count the vertices, check which properties are used,
		// and cache the BufferGeometry
		let vertexCount = 0;
		let faceCount = 0;
		object.traverse( function ( child ) {
			if ( child.isMesh === true ) {
				const mesh = child;
				const geometry = mesh.geometry;
				const vertices = geometry.getAttribute( 'position' );
				const normals = geometry.getAttribute( 'normal' );
				const uvs = geometry.getAttribute( 'uv' );
				const colors = geometry.getAttribute( 'color' );
				const indices = geometry.getIndex();
				if ( vertices === undefined ) {
					return;
				}
				vertexCount += vertices.count;
				faceCount += indices ? indices.count / 3 : vertices.count / 3;
				if ( normals !== undefined ) includeNormals = true;
				if ( uvs !== undefined ) includeUVs = true;
				if ( colors !== undefined ) includeColors = true;
			} else if ( child.isPoints ) {
				const mesh = child;
				const geometry = mesh.geometry;
				const vertices = geometry.getAttribute( 'position' );
				const normals = geometry.getAttribute( 'normal' );
				const colors = geometry.getAttribute( 'color' );
				vertexCount += vertices.count;
				if ( normals !== undefined ) includeNormals = true;
				if ( colors !== undefined ) includeColors = true;
				includeIndices = false;
			}
		} );
		const tempColor = new Color();
		includeIndices = includeIndices && excludeAttributes.indexOf( 'index' ) === - 1;
		includeNormals = includeNormals && excludeAttributes.indexOf( 'normal' ) === - 1;
		includeColors = includeColors && excludeAttributes.indexOf( 'color' ) === - 1;
		includeUVs = includeUVs && excludeAttributes.indexOf( 'uv' ) === - 1;
		if ( includeIndices && faceCount !== Math.floor( faceCount ) ) {
			// point cloud meshes will not have an index array and may not have a
			// number of vertices that is divisble by 3 (and therefore representable
			// as triangles)
			console.error(
				'PLYExporter: Failed to generate a valid PLY file with triangle indices because the ' +
				'number of indices is not divisible by 3.'
			);
			return null;
		}
		const indexByteCount = 4;
		let header =
			'ply\n' +
			`format ${ options.binary ? ( options.littleEndian ? 'binary_little_endian' : 'binary_big_endian' ) : 'ascii' } 1.0\n` +
			`element vertex ${vertexCount}\n` +
			// position
			'property float x\n' +
			'property float y\n' +
			'property float z\n';
		if ( includeNormals === true ) {
			// normal
			header +=
				'property float nx\n' +
				'property float ny\n' +
				'property float nz\n';
		}
		if ( includeUVs === true ) {
			// uvs
			header +=
				'property float s\n' +
				'property float t\n';
		}
		if ( includeColors === true ) {
			// colors
			header +=
				'property uchar red\n' +
				'property uchar green\n' +
				'property uchar blue\n';
		}
		if ( includeIndices === true ) {
			// faces
			header +=
				`element face ${faceCount}\n` +
				'property list uchar int vertex_index\n';
		}
		header += 'end_header\n';
		// Generate attribute data
		const vertex = new Vector3();
		const normalMatrixWorld = new Matrix3();
		let result = null;
		if ( options.binary === true ) {
			// Binary File Generation
			const headerBin = new TextEncoder().encode( header );
			// 3 position values at 4 bytes
			// 3 normal values at 4 bytes
			// 3 color channels with 1 byte
			// 2 uv values at 4 bytes
			const vertexListLength = vertexCount * ( 4 * 3 + ( includeNormals ? 4 * 3 : 0 ) + ( includeColors ? 3 : 0 ) + ( includeUVs ? 4 * 2 : 0 ) );
			// 1 byte shape desciptor
			// 3 vertex indices at ${indexByteCount} bytes
			const faceListLength = includeIndices ? faceCount * ( indexByteCount * 3 + 1 ) : 0;
			const output = new DataView( new ArrayBuffer( headerBin.length + vertexListLength + faceListLength ) );
			new Uint8Array( output.buffer ).set( headerBin, 0 );
			let vOffset = headerBin.length;
			let fOffset = headerBin.length + vertexListLength;
			let writtenVertices = 0;
			traverseMeshes( function ( mesh, geometry ) {
				const vertices = geometry.getAttribute( 'position' );
				const normals = geometry.getAttribute( 'normal' );
				const uvs = geometry.getAttribute( 'uv' );
				const colors = geometry.getAttribute( 'color' );
				const indices = geometry.getIndex();
				normalMatrixWorld.getNormalMatrix( mesh.matrixWorld );
				for ( let i = 0, l = vertices.count; i < l; i ++ ) {
					vertex.fromBufferAttribute( vertices, i );
					vertex.applyMatrix4( mesh.matrixWorld );
					// Position information
					output.setFloat32( vOffset, vertex.x, options.littleEndian );
					vOffset += 4;
					output.setFloat32( vOffset, vertex.y, options.littleEndian );
					vOffset += 4;
					output.setFloat32( vOffset, vertex.z, options.littleEndian );
					vOffset += 4;
					// Normal information
					if ( includeNormals === true ) {
						if ( normals != null ) {
							vertex.fromBufferAttribute( normals, i );
							vertex.applyMatrix3( normalMatrixWorld ).normalize();
							output.setFloat32( vOffset, vertex.x, options.littleEndian );
							vOffset += 4;
							output.setFloat32( vOffset, vertex.y, options.littleEndian );
							vOffset += 4;
							output.setFloat32( vOffset, vertex.z, options.littleEndian );
							vOffset += 4;
						} else {
							output.setFloat32( vOffset, 0, options.littleEndian );
							vOffset += 4;
							output.setFloat32( vOffset, 0, options.littleEndian );
							vOffset += 4;
							output.setFloat32( vOffset, 0, options.littleEndian );
							vOffset += 4;
						}
					}
					// UV information
					if ( includeUVs === true ) {
						if ( uvs != null ) {
							output.setFloat32( vOffset, uvs.getX( i ), options.littleEndian );
							vOffset += 4;
							output.setFloat32( vOffset, uvs.getY( i ), options.littleEndian );
							vOffset += 4;
						} else {
							output.setFloat32( vOffset, 0, options.littleEndian );
							vOffset += 4;
							output.setFloat32( vOffset, 0, options.littleEndian );
							vOffset += 4;
						}
					}
					// Color information
					if ( includeColors === true ) {
						if ( colors != null ) {
							tempColor
								.fromBufferAttribute( colors, i )
								.convertLinearToSRGB();
							output.setUint8( vOffset, Math.floor( tempColor.r * 255 ) );
							vOffset += 1;
							output.setUint8( vOffset, Math.floor( tempColor.g * 255 ) );
							vOffset += 1;
							output.setUint8( vOffset, Math.floor( tempColor.b * 255 ) );
							vOffset += 1;
						} else {
							output.setUint8( vOffset, 255 );
							vOffset += 1;
							output.setUint8( vOffset, 255 );
							vOffset += 1;
							output.setUint8( vOffset, 255 );
							vOffset += 1;
						}
					}
				}
				if ( includeIndices === true ) {
					// Create the face list
					if ( indices !== null ) {
						for ( let i = 0, l = indices.count; i < l; i += 3 ) {
							output.setUint8( fOffset, 3 );
							fOffset += 1;
							output.setUint32( fOffset, indices.getX( i + 0 ) + writtenVertices, options.littleEndian );
							fOffset += indexByteCount;
							output.setUint32( fOffset, indices.getX( i + 1 ) + writtenVertices, options.littleEndian );
							fOffset += indexByteCount;
							output.setUint32( fOffset, indices.getX( i + 2 ) + writtenVertices, options.littleEndian );
							fOffset += indexByteCount;
						}
					} else {
						for ( let i = 0, l = vertices.count; i < l; i += 3 ) {
							output.setUint8( fOffset, 3 );
							fOffset += 1;
							output.setUint32( fOffset, writtenVertices + i, options.littleEndian );
							fOffset += indexByteCount;
							output.setUint32( fOffset, writtenVertices + i + 1, options.littleEndian );
							fOffset += indexByteCount;
							output.setUint32( fOffset, writtenVertices + i + 2, options.littleEndian );
							fOffset += indexByteCount;
						}
					}
				}
				// Save the amount of verts we've already written so we can offset
				// the face index on the next mesh
				writtenVertices += vertices.count;
			} );
			result = output.buffer;
		} else {
			// Ascii File Generation
			// count the number of vertices
			let writtenVertices = 0;
			let vertexList = '';
			let faceList = '';
			traverseMeshes( function ( mesh, geometry ) {
				const vertices = geometry.getAttribute( 'position' );
				const normals = geometry.getAttribute( 'normal' );
				const uvs = geometry.getAttribute( 'uv' );
				const colors = geometry.getAttribute( 'color' );
				const indices = geometry.getIndex();
				normalMatrixWorld.getNormalMatrix( mesh.matrixWorld );
				// form each line
				for ( let i = 0, l = vertices.count; i < l; i ++ ) {
					vertex.fromBufferAttribute( vertices, i );
					vertex.applyMatrix4( mesh.matrixWorld );
					// Position information
					let line =
						vertex.x + ' ' +
						vertex.y + ' ' +
						vertex.z;
					// Normal information
					if ( includeNormals === true ) {
						if ( normals != null ) {
							vertex.fromBufferAttribute( normals, i );
							vertex.applyMatrix3( normalMatrixWorld ).normalize();
							line += ' ' +
								vertex.x + ' ' +
								vertex.y + ' ' +
								vertex.z;
						} else {
							line += ' 0 0 0';
						}
					}
					// UV information
					if ( includeUVs === true ) {
						if ( uvs != null ) {
							line += ' ' +
								uvs.getX( i ) + ' ' +
								uvs.getY( i );
						} else {
							line += ' 0 0';
						}
					}
					// Color information
					if ( includeColors === true ) {
						if ( colors != null ) {
							tempColor
								.fromBufferAttribute( colors, i )
								.convertLinearToSRGB();
							line += ' ' +
								Math.floor( tempColor.r * 255 ) + ' ' +
								Math.floor( tempColor.g * 255 ) + ' ' +
								Math.floor( tempColor.b * 255 );
						} else {
							line += ' 255 255 255';
						}
					}
					vertexList += line + '\n';
				}
				// Create the face list
				if ( includeIndices === true ) {
					if ( indices !== null ) {
						for ( let i = 0, l = indices.count; i < l; i += 3 ) {
							faceList += `3 ${ indices.getX( i + 0 ) + writtenVertices }`;
							faceList += ` ${ indices.getX( i + 1 ) + writtenVertices }`;
							faceList += ` ${ indices.getX( i + 2 ) + writtenVertices }\n`;
						}
					} else {
						for ( let i = 0, l = vertices.count; i < l; i += 3 ) {
							faceList += `3 ${ writtenVertices + i } ${ writtenVertices + i + 1 } ${ writtenVertices + i + 2 }\n`;
						}
					}
					faceCount += indices ? indices.count / 3 : vertices.count / 3;
				}
				writtenVertices += vertices.count;
			} );
			result = `${ header }${vertexList}${ includeIndices ? `${faceList}\n` : '\n' }`;
		}
		if ( typeof onDone === 'function' ) requestAnimationFrame( () => onDone( result ) );
		return result;
	}
}
export { PLYExporter };