File: //var/www/aspa/three/addons/curves/NURBSUtils.js
import {
	Vector3,
	Vector4
} from 'three';
/**
 * NURBS utils
 *
 * See NURBSCurve and NURBSSurface.
 **/
/**************************************************************
 *	NURBS Utils
 **************************************************************/
/*
Finds knot vector span.
p : degree
u : parametric value
U : knot vector
returns the span
*/
function findSpan( p, u, U ) {
	const n = U.length - p - 1;
	if ( u >= U[ n ] ) {
		return n - 1;
	}
	if ( u <= U[ p ] ) {
		return p;
	}
	let low = p;
	let high = n;
	let mid = Math.floor( ( low + high ) / 2 );
	while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
		if ( u < U[ mid ] ) {
			high = mid;
		} else {
			low = mid;
		}
		mid = Math.floor( ( low + high ) / 2 );
	}
	return mid;
}
/*
Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
span : span in which u lies
u    : parametric point
p    : degree
U    : knot vector
returns array[p+1] with basis functions values.
*/
function calcBasisFunctions( span, u, p, U ) {
	const N = [];
	const left = [];
	const right = [];
	N[ 0 ] = 1.0;
	for ( let j = 1; j <= p; ++ j ) {
		left[ j ] = u - U[ span + 1 - j ];
		right[ j ] = U[ span + j ] - u;
		let saved = 0.0;
		for ( let r = 0; r < j; ++ r ) {
			const rv = right[ r + 1 ];
			const lv = left[ j - r ];
			const temp = N[ r ] / ( rv + lv );
			N[ r ] = saved + rv * temp;
			saved = lv * temp;
		}
		N[ j ] = saved;
	}
	return N;
}
/*
Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
p : degree of B-Spline
U : knot vector
P : control points (x, y, z, w)
u : parametric point
returns point for given u
*/
function calcBSplinePoint( p, U, P, u ) {
	const span = findSpan( p, u, U );
	const N = calcBasisFunctions( span, u, p, U );
	const C = new Vector4( 0, 0, 0, 0 );
	for ( let j = 0; j <= p; ++ j ) {
		const point = P[ span - p + j ];
		const Nj = N[ j ];
		const wNj = point.w * Nj;
		C.x += point.x * wNj;
		C.y += point.y * wNj;
		C.z += point.z * wNj;
		C.w += point.w * Nj;
	}
	return C;
}
/*
Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
span : span in which u lies
u    : parametric point
p    : degree
n    : number of derivatives to calculate
U    : knot vector
returns array[n+1][p+1] with basis functions derivatives
*/
function calcBasisFunctionDerivatives( span, u, p, n, U ) {
	const zeroArr = [];
	for ( let i = 0; i <= p; ++ i )
		zeroArr[ i ] = 0.0;
	const ders = [];
	for ( let i = 0; i <= n; ++ i )
		ders[ i ] = zeroArr.slice( 0 );
	const ndu = [];
	for ( let i = 0; i <= p; ++ i )
		ndu[ i ] = zeroArr.slice( 0 );
	ndu[ 0 ][ 0 ] = 1.0;
	const left = zeroArr.slice( 0 );
	const right = zeroArr.slice( 0 );
	for ( let j = 1; j <= p; ++ j ) {
		left[ j ] = u - U[ span + 1 - j ];
		right[ j ] = U[ span + j ] - u;
		let saved = 0.0;
		for ( let r = 0; r < j; ++ r ) {
			const rv = right[ r + 1 ];
			const lv = left[ j - r ];
			ndu[ j ][ r ] = rv + lv;
			const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
			ndu[ r ][ j ] = saved + rv * temp;
			saved = lv * temp;
		}
		ndu[ j ][ j ] = saved;
	}
	for ( let j = 0; j <= p; ++ j ) {
		ders[ 0 ][ j ] = ndu[ j ][ p ];
	}
	for ( let r = 0; r <= p; ++ r ) {
		let s1 = 0;
		let s2 = 1;
		const a = [];
		for ( let i = 0; i <= p; ++ i ) {
			a[ i ] = zeroArr.slice( 0 );
		}
		a[ 0 ][ 0 ] = 1.0;
		for ( let k = 1; k <= n; ++ k ) {
			let d = 0.0;
			const rk = r - k;
			const pk = p - k;
			if ( r >= k ) {
				a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
				d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
			}
			const j1 = ( rk >= - 1 ) ? 1 : - rk;
			const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
			for ( let j = j1; j <= j2; ++ j ) {
				a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
				d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
			}
			if ( r <= pk ) {
				a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
				d += a[ s2 ][ k ] * ndu[ r ][ pk ];
			}
			ders[ k ][ r ] = d;
			const j = s1;
			s1 = s2;
			s2 = j;
		}
	}
	let r = p;
	for ( let k = 1; k <= n; ++ k ) {
		for ( let j = 0; j <= p; ++ j ) {
			ders[ k ][ j ] *= r;
		}
		r *= p - k;
	}
	return ders;
}
/*
	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
	p  : degree
	U  : knot vector
	P  : control points
	u  : Parametric points
	nd : number of derivatives
	returns array[d+1] with derivatives
	*/
function calcBSplineDerivatives( p, U, P, u, nd ) {
	const du = nd < p ? nd : p;
	const CK = [];
	const span = findSpan( p, u, U );
	const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
	const Pw = [];
	for ( let i = 0; i < P.length; ++ i ) {
		const point = P[ i ].clone();
		const w = point.w;
		point.x *= w;
		point.y *= w;
		point.z *= w;
		Pw[ i ] = point;
	}
	for ( let k = 0; k <= du; ++ k ) {
		const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
		for ( let j = 1; j <= p; ++ j ) {
			point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
		}
		CK[ k ] = point;
	}
	for ( let k = du + 1; k <= nd + 1; ++ k ) {
		CK[ k ] = new Vector4( 0, 0, 0 );
	}
	return CK;
}
/*
Calculate "K over I"
returns k!/(i!(k-i)!)
*/
function calcKoverI( k, i ) {
	let nom = 1;
	for ( let j = 2; j <= k; ++ j ) {
		nom *= j;
	}
	let denom = 1;
	for ( let j = 2; j <= i; ++ j ) {
		denom *= j;
	}
	for ( let j = 2; j <= k - i; ++ j ) {
		denom *= j;
	}
	return nom / denom;
}
/*
Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
Pders : result of function calcBSplineDerivatives
returns array with derivatives for rational curve.
*/
function calcRationalCurveDerivatives( Pders ) {
	const nd = Pders.length;
	const Aders = [];
	const wders = [];
	for ( let i = 0; i < nd; ++ i ) {
		const point = Pders[ i ];
		Aders[ i ] = new Vector3( point.x, point.y, point.z );
		wders[ i ] = point.w;
	}
	const CK = [];
	for ( let k = 0; k < nd; ++ k ) {
		const v = Aders[ k ].clone();
		for ( let i = 1; i <= k; ++ i ) {
			v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
		}
		CK[ k ] = v.divideScalar( wders[ 0 ] );
	}
	return CK;
}
/*
Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
p  : degree
U  : knot vector
P  : control points in homogeneous space
u  : parametric points
nd : number of derivatives
returns array with derivatives.
*/
function calcNURBSDerivatives( p, U, P, u, nd ) {
	const Pders = calcBSplineDerivatives( p, U, P, u, nd );
	return calcRationalCurveDerivatives( Pders );
}
/*
Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
p, q : degrees of B-Spline surface
U, V : knot vectors
P    : control points (x, y, z, w)
u, v : parametric values
returns point for given (u, v)
*/
function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
	const uspan = findSpan( p, u, U );
	const vspan = findSpan( q, v, V );
	const Nu = calcBasisFunctions( uspan, u, p, U );
	const Nv = calcBasisFunctions( vspan, v, q, V );
	const temp = [];
	for ( let l = 0; l <= q; ++ l ) {
		temp[ l ] = new Vector4( 0, 0, 0, 0 );
		for ( let k = 0; k <= p; ++ k ) {
			const point = P[ uspan - p + k ][ vspan - q + l ].clone();
			const w = point.w;
			point.x *= w;
			point.y *= w;
			point.z *= w;
			temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
		}
	}
	const Sw = new Vector4( 0, 0, 0, 0 );
	for ( let l = 0; l <= q; ++ l ) {
		Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
	}
	Sw.divideScalar( Sw.w );
	target.set( Sw.x, Sw.y, Sw.z );
}
/*
Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.
p, q, r   : degrees of B-Splinevolume
U, V, W   : knot vectors
P         : control points (x, y, z, w)
u, v, w   : parametric values
returns point for given (u, v, w)
*/
function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {
	const uspan = findSpan( p, u, U );
	const vspan = findSpan( q, v, V );
	const wspan = findSpan( r, w, W );
	const Nu = calcBasisFunctions( uspan, u, p, U );
	const Nv = calcBasisFunctions( vspan, v, q, V );
	const Nw = calcBasisFunctions( wspan, w, r, W );
	const temp = [];
	for ( let m = 0; m <= r; ++ m ) {
		temp[ m ] = [];
		for ( let l = 0; l <= q; ++ l ) {
			temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
			for ( let k = 0; k <= p; ++ k ) {
				const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
				const w = point.w;
				point.x *= w;
				point.y *= w;
				point.z *= w;
				temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );
			}
		}
	}
	const Sw = new Vector4( 0, 0, 0, 0 );
	for ( let m = 0; m <= r; ++ m ) {
		for ( let l = 0; l <= q; ++ l ) {
			Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );
		}
	}
	Sw.divideScalar( Sw.w );
	target.set( Sw.x, Sw.y, Sw.z );
}
export {
	findSpan,
	calcBasisFunctions,
	calcBSplinePoint,
	calcBasisFunctionDerivatives,
	calcBSplineDerivatives,
	calcKoverI,
	calcRationalCurveDerivatives,
	calcNURBSDerivatives,
	calcSurfacePoint,
	calcVolumePoint,
};